Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559277

RESUMEN

Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade, and eventually replace, the collagen-containing fibrotic tissue following injury. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion using live-imaging and histological approaches. We observed close interactions between protruding cardiomyocytes and macrophages at the wound border zone, and macrophage-deficient irf8 mutant zebrafish exhibited defects in extracellular matrix (ECM) remodeling and cardiomyocyte protrusion into the injured area. Using a resident macrophage ablation model, we show that defects in ECM remodeling at the border zone and subsequent cardiomyocyte protrusion can be partly attributed to a population of resident macrophages. Single-cell RNA-sequencing analysis of cells at the wound border revealed a population of cardiomyocytes and macrophages with fibroblast-like gene expression signatures, including the expression of genes encoding ECM structural proteins and ECM-remodeling proteins. The expression of mmp14b , which encodes a membrane-anchored matrix metalloproteinase, was restricted to cells in the border zone, including cardiomyocytes, macrophages, fibroblasts, and endocardial/endothelial cells. Genetic deletion of mmp14b led to a decrease in 1) macrophage recruitment to the border zone, 2) collagen degradation at the border zone, and 3) subsequent cardiomyocyte invasion. Furthermore, cardiomyocyte-specific overexpression of mmp14b was sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data shed important insights into the process of cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration. They further suggest that cardiomyocytes and resident macrophages contribute to ECM remodeling at the border zone to promote cardiomyocyte replenishment of the fibrotic injured tissue.

2.
Nucleic Acids Res ; 52(8): 4215-4233, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38364861

RESUMEN

The limited regenerative capacity of the human heart contributes to high morbidity and mortality worldwide. In contrast, zebrafish exhibit robust regenerative capacity, providing a powerful model for studying how to overcome intrinsic epigenetic barriers maintaining cardiac homeostasis and initiate regeneration. Here, we present a comprehensive analysis of the histone modifications H3K4me1, H3K4me3, H3K27me3 and H3K27ac during various stages of zebrafish heart regeneration. We found a vast gain of repressive chromatin marks one day after myocardial injury, followed by the acquisition of active chromatin characteristics on day four and a transition to a repressive state on day 14, and identified distinct transcription factor ensembles associated with these events. The rapid transcriptional response involves the engagement of super-enhancers at genes implicated in extracellular matrix reorganization and TOR signaling, while H3K4me3 breadth highly correlates with transcriptional activity and dynamic changes at genes involved in proteolysis, cell cycle activity, and cell differentiation. Using loss- and gain-of-function approaches, we identified transcription factors in cardiomyocytes and endothelial cells influencing cardiomyocyte dedifferentiation or proliferation. Finally, we detected significant evolutionary conservation between regulatory regions that drive zebrafish and neonatal mouse heart regeneration, suggesting that reactivating transcriptional and epigenetic networks converging on these regulatory elements might unlock the regenerative potential of adult human hearts.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Corazón , Animales , Humanos , Ratones , Diferenciación Celular , Cromatina/metabolismo , Cromatina/genética , Epigénesis Genética , Código de Histonas , Histonas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Regeneración/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética
3.
Dev Dyn ; 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36502296

RESUMEN

Cardiovascular disease is a leading cause of death worldwide. Due to the limited proliferative and regenerative capacity of adult cardiomyocytes, the lost myocardium is not replenished efficiently and is replaced by a fibrotic scar, which eventually leads to heart failure. Current therapies to cure or delay the progression of heart failure are limited; hence, there is a pressing need for regenerative approaches to support the failing heart. Cardiomyocytes undergo a series of transcriptional, structural, and metabolic changes after birth (collectively termed maturation), which is critical for their contractile function but limits the regenerative capacity of the heart. In regenerative organisms, cardiomyocytes revert from their terminally differentiated state into a less mature state (ie, dedifferentiation) to allow for proliferation and regeneration to occur. Importantly, stimulating adult cardiomyocyte dedifferentiation has been shown to promote morphological and functional improvement after myocardial infarction, further highlighting the importance of cardiomyocyte dedifferentiation in heart regeneration. Here, we review several hallmarks of cardiomyocyte maturation, and summarize how their reversal facilitates cardiomyocyte proliferation and heart regeneration. A detailed understanding of how cardiomyocyte dedifferentiation is regulated will provide insights into therapeutic options to promote cardiomyocyte de-maturation and proliferation, and ultimately heart regeneration in mammals.

4.
EMBO Rep ; 21(8): e49752, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32648304

RESUMEN

Cardiac metabolism plays a crucial role in producing sufficient energy to sustain cardiac function. However, the role of metabolism in different aspects of cardiomyocyte regeneration remains unclear. Working with the adult zebrafish heart regeneration model, we first find an increase in the levels of mRNAs encoding enzymes regulating glucose and pyruvate metabolism, including pyruvate kinase M1/2 (Pkm) and pyruvate dehydrogenase kinases (Pdks), especially in tissues bordering the damaged area. We further find that impaired glycolysis decreases the number of proliferating cardiomyocytes following injury. These observations are supported by analyses using loss-of-function models for the metabolic regulators Pkma2 and peroxisome proliferator-activated receptor gamma coactivator 1 alpha. Cardiomyocyte-specific loss- and gain-of-function manipulations of pyruvate metabolism using Pdk3 as well as a catalytic subunit of the pyruvate dehydrogenase complex (PDC) reveal its importance in cardiomyocyte dedifferentiation and proliferation after injury. Furthermore, we find that PDK activity can modulate cell cycle progression and protrusive activity in mammalian cardiomyocytes in culture. Our findings reveal new roles for cardiac metabolism and the PDK-PDC axis in cardiomyocyte behavior following cardiac injury.


Asunto(s)
Miocitos Cardíacos , Pez Cebra , Animales , Proliferación Celular , Glucólisis , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pez Cebra/metabolismo
5.
Circ Res ; 126(12): 1760-1778, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312172

RESUMEN

RATIONALE: The adult human heart is an organ with low regenerative potential. Heart failure following acute myocardial infarction is a leading cause of death due to the inability of cardiomyocytes to proliferate and replenish lost cardiac muscle. While the zebrafish has emerged as a powerful model to study endogenous cardiac regeneration, the molecular mechanisms by which cardiomyocytes respond to damage by disassembling sarcomeres, proliferating, and repopulating the injured area remain unclear. Furthermore, we are far from understanding the regulation of the chromatin landscape and epigenetic barriers that must be overcome for cardiac regeneration to occur. OBJECTIVE: To identify transcription factor regulators of the chromatin landscape, which promote cardiomyocyte regeneration in zebrafish, and investigate their function. METHODS AND RESULTS: Using the Assay for Transposase-Accessible Chromatin coupled to high-throughput sequencing (ATAC-Seq), we first find that the regenerating cardiomyocyte chromatin accessibility landscape undergoes extensive changes following cryoinjury, and that activator protein-1 (AP-1) binding sites are the most highly enriched motifs in regions that gain accessibility during cardiac regeneration. Furthermore, using bioinformatic and gene expression analyses, we find that the AP-1 response in regenerating adult zebrafish cardiomyocytes is largely different from the response in adult mammalian cardiomyocytes. Using a cardiomyocyte-specific dominant negative approach, we show that blocking AP-1 function leads to defects in cardiomyocyte proliferation as well as decreased chromatin accessibility at the fbxl22 and ilk loci, which regulate sarcomere disassembly and cardiomyocyte protrusion into the injured area, respectively. We further show that overexpression of the AP-1 family members Junb and Fosl1 can promote changes in mammalian cardiomyocyte behavior in vitro. CONCLUSIONS: AP-1 transcription factors play an essential role in the cardiomyocyte response to injury by regulating chromatin accessibility changes, thereby allowing the activation of gene expression programs that promote cardiomyocyte dedifferentiation, proliferation, and protrusion into the injured area.


Asunto(s)
Cromatina/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración , Sarcómeros/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Células Cultivadas , Miocitos Cardíacos/fisiología , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley , Sarcómeros/fisiología , Factor de Transcripción AP-1/genética , Pez Cebra , Proteínas de Pez Cebra/genética
6.
Dev Cell ; 51(1): 62-77.e5, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495694

RESUMEN

Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.


Asunto(s)
Cofilina 1/metabolismo , Corazón/embriología , Miocitos Cardíacos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Vinculina/metabolismo , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Aminobenzoatos/farmacología , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/metabolismo , Miocardio/metabolismo , Miofibrillas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Pez Cebra
7.
Dev Cell ; 50(5): 644-657.e8, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31422919

RESUMEN

Precisely controlled gene regulatory networks are required during embryonic development to give rise to various structures, including those of the cardiovascular system. Long non-coding RNA (lncRNA) loci are known to be important regulators of these genetic programs. We have identified a novel and essential lncRNA locus Handsdown (Hdn), active in early heart cells, and show by genetic inactivation that it is essential for murine development. Hdn displays haploinsufficiency for cardiac development as Hdn-heterozygous adult mice exhibit hyperplasia in the right ventricular wall. Transcriptional activity of the Hdn locus, independent of its RNA, suppresses its neighboring gene Hand2. We reveal a switch in a topologically associated domain in differentiation of the cardiac lineage, allowing the Hdn locus to directly interact with regulatory elements of the Hand2 locus.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Células Cultivadas , Haploinsuficiencia , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/citología , ARN Largo no Codificante/genética
8.
Development ; 146(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31097478

RESUMEN

The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Endotelio Vascular/embriología , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Diferenciación Celular/genética , Mapeo Cromosómico/métodos , Conjuntos de Datos como Asunto , Embrión no Mamífero , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Genómica/métodos , Proteínas con Dominio LIM/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
EMBO Rep ; 19(1): 118-134, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141987

RESUMEN

T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas Fetales/genética , Histonas/metabolismo , Mesodermo/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción p300-CBP/genética , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula/genética , Cromatina/química , Cromatina/metabolismo , Embrión de Mamíferos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Ratones , Células Madre Embrionarias de Ratones/citología , Mutación Puntual , Unión Proteica , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción p300-CBP/metabolismo
10.
Nat Commun ; 8: 14495, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211472

RESUMEN

Tissue integrity is critical for organ formation and function. During heart development, cardiomyocytes differentiate and integrate to form a coherent tissue that contracts synchronously. However, the molecular mechanisms regulating cardiac tissue integrity are poorly understood. Here we show that proteolysis, via the E3 ubiquitin ligase ASB2, regulates cardiomyocyte maturation and tissue integrity. Cardiomyocytes in asb2b zebrafish mutants fail to terminally differentiate, resulting in reduced cardiac contractility and output. Mosaic analyses reveal a cell-autonomous requirement for Asb2b in cardiomyocytes for their integration as asb2b mutant cardiomyocytes are unable to meld into wild-type myocardial tissue. In vitro and in vivo data indicate that ASB2 negatively regulates TCF3, a bHLH transcription factor. TCF3 must be degraded for cardiomyocyte maturation, as TCF3 gain-of-function causes a number of phenotypes associated with cardiomyocyte dedifferentiation. Overall, our results show that proteolysis has an important role in cardiomyocyte maturation and the formation of a coherent myocardial tissue.


Asunto(s)
Miocitos Cardíacos/metabolismo , Organogénesis , Proteolisis , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Desdiferenciación Celular , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Ratones , Mutación/genética , Miocitos Cardíacos/patología , Ratas , Pez Cebra/genética
11.
Dev Cell ; 24(2): 206-14, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23369715

RESUMEN

The histone-modifying complexes PRC2 and TrxG/MLL play pivotal roles in determining the activation state of genes controlling pluripotency, lineage commitment, and cell differentiation. Long noncoding RNAs (lncRNAs) can bind to either complex, and some have been shown to act as modulators of PRC2 or TrxG/MLL activity. Here we show that the lateral mesoderm-specific lncRNA Fendrr is essential for proper heart and body wall development in the mouse. Embryos lacking Fendrr displayed upregulation of several transcription factors controlling lateral plate or cardiac mesoderm differentiation, accompanied by a drastic reduction in PRC2 occupancy along with decreased H3K27 trimethylation and/or an increase in H3K4 trimethylation at their promoters. Fendrr binds to both the PRC2 and TrxG/MLL complexes, suggesting that it acts as modulator of chromatin signatures that define gene activity. Thus, we identified an lncRNA that plays an essential role in the regulatory networks controlling the fate of lateral mesoderm derivatives.


Asunto(s)
Desarrollo Embrionario , Corazón/embriología , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Diferenciación Celular/genética , Metilación de ADN , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factores de Transcripción Forkhead/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
12.
Nat Commun ; 2: 390, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21750544

RESUMEN

Segmentation is an organizing principle of body plans. The segmentation clock, a molecular oscillator best illustrated by the cyclic expression of Notch signalling genes, controls the periodic cleavage of somites from unsegmented presomitic mesoderm during vertebrate segmentation. Wnt3a controls the spatiotemporal expression of cyclic Notch genes; however, the underlying mechanisms remain obscure. Here we show by transcriptional profiling of Wnt3a (-/-) embryos that the bHLH transcription factor, Mesogenin1 (Msgn1), is a direct target gene of Wnt3a. To identify Msgn1 targets, we conducted genome-wide studies of Msgn1 activity in embryonic stem cells. We show that Msgn1 is a major transcriptional activator of a Notch signalling program and synergizes with Notch to trigger clock gene expression. Msgn1 also indirectly regulates cyclic genes in the Fgf and Wnt pathways. Thus, Msgn1 is a central component of a transcriptional cascade that translates a spatial Wnt3a gradient into a temporal pattern of clock gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Células Madre Embrionarias , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA