Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bull Exp Biol Med ; 175(2): 225-228, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37464199

RESUMEN

We performed a search for nanoantibodies that specifically interact with the receptor-binding domain (RBD) of the SARS-CoV-2 surface protein. The specificity of single-domain antibodies from the blood sera of a llama immunized with RBD of SARS-CoV-2 surface protein S (variant B.1.1.7 (Alpha)) was analyzed by ELISA. Recombinant trimers of the SARS-CoV-2 spike protein were used as antigens. In this work, a set of single-domain antibodies was obtained that specifically bind to the RBD of the SARS-CoV-2 virus.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , SARS-CoV-2 , Anticuerpos de Dominio Único/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Membrana
2.
Vavilovskii Zhurnal Genet Selektsii ; 27(4): 421-427, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37465195

RESUMEN

The milk-clotting enzyme chymosin is a member of the group of aspartate proteinases. Chymosin is the main component of rennet traditionally obtained from the stomachs of dairy calves and widely used to coagulate milk in the production of various types of cheese. Another source of chymosin, which does not require the killing of animals, is based on recombinant DNA technology. Recombinant alpaca chymosin has a number of valuable technological properties that make it attractive for use in cheese-making as an alternative to recombinant bovine chymosin. The purpose of this work is to study the effect of coexpression of thioredoxin and prochymosin on the refolding of the recombinant zymogen and the activity of alpaca chymosin. To achieve this goal, on the basis of the pET32a plasmid, an expression vector was constructed containing the thioredoxin A gene fused to the N-terminal sequence of the marker enzyme zymogen, alpaca prochymosin. Using the constructed vector, pET-TrxProChn, a strain-producer of the recombinant chimeric protein thioredoxin-prochymosin was obtained. The choice of prochymosin as a model protein is due to the ability of autocatalytic activation of this zymogen, in which the pro-fragment is removed, together with the thioredoxin sequence attached to it, with the formation of active chymosin. It is shown that Escherichia coli strain BL21 transformed with the pET-TrxProChn plasmid provides an efficient synthesis of the thioredoxin-prochymosin chimeric molecule. However, the chimeric protein accumulates in inclusion bodies in an insoluble form. Therefore, a renaturation procedure was used to obtain the active target enzyme. Fusion of thioredoxin capable of disulfide-reductase activity to the N-terminal sequence of prochymosin provides optimal conditions for zymogen refolding and increases the yield of recombinant alpaca chymosin immediately after activation and during long-term storage by 13 and 15 %, respectively. The inclusion of thioredoxin in the composition of the chimeric protein, apparently, contributes to the process of correct reduction of disulfide bonds in the prochymosin molecule, which is reflected in the dynamics of the increase in the milk-clotting activity of alpaca chymosin during long-term storage.

3.
Russ Chem Bull ; 72(1): 248-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817557

RESUMEN

Conjugates of the natural alkaloid (aR,7S)-colchicine with bicyclic monoterpenoids and their derivatives were synthesized for the first time. Molecular docking of the synthesized agents in the active site of the main viral protease of the SARS-CoV-2 virus was carried out. The cytotoxic properties of the agents against different cell lines and the ability to inhibit the main viral protease 3CLPro were studied.

4.
Russ Chem Bull ; 72(1): 239-247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817558

RESUMEN

Based on the data obtained by molecular modeling of the non-covalent interaction of non-symmetric N-benzylbispidin-9-ol amides with the active site of the main protease 3CLpro of the SARS-CoV-2 virus, a series of compounds was synthesized, and their inhibitory activity against 3CLpro was studied and compared with that of the known inhibitor ML188 (IC50 = 1.56±0.55 µmol L-1). It was found that only compound 1g containing the 1,4-dihydroindeno[1,2-c]pyrazole fragment showed moderate activity (IC50 = 100±5.7µmol L-1) and was characterized by the highest calculated binding energy among the studied bispidine derivatives according to molecular docking data.

5.
Vavilovskii Zhurnal Genet Selektsii ; 26(3): 240-249, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35774365

RESUMEN

Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing "cheese-making" standards is an urgent biotechnological task. Within this study, we for the first time constructed an expression vector allowing production of a recombinant analog of moose chymosin in the expression system of Escherichia coli (strain SHuffle express). We built a model of the spatial structure of moose chymosin and compared the topography of positive and negative surface charges with the correspondent structures of cow and camel chymosins. We found that the distribution of charges on the surface of moose chymosin has common features with that of cow and camel chymosins. However, the moose enzyme carries a unique positively charged patch, which is likely to affect its interaction with the substrate. Biochemical and technological properties of the moose rChn were studied. Commercial rСhns of cow and camel were used as comparison enzymes. In some technological parameters, the moose rChn proved to be superior to the reference enzymes. Сompared with the cow and camel rСhns, the moose chymosin specific activity is less dependent on the changes in CaCl2 concentration in the range of 1-5 mM and pH in the range of 6-7, which is an attractive technological property. The total proteolytic activity of the moose rСhn occupies an intermediate position between the rСhns of cow and camel. The combination of biochemical and technological properties of the moose rСhn argues for further study of this enzyme.

6.
Bull Exp Biol Med ; 174(2): 246-249, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36598669

RESUMEN

During the COVID-19 pandemic, the development of prophylactic vaccines, including those based on new platforms, became highly relevant. One such platform is the creation of vaccines combining DNA and protein components in one construct. For the creation of DNA vaccine, we chose the full-length spike protein (S) of the SARS-CoV-2 virus and used the recombinant receptor-binding domain (RBD) of the S protein produced in CHO-K1 cells as a protein component. The immunogenicity of the developed combined vaccine and its individual components was compared and the contribution of each component to the induction of the immune response was analyzed. The combined DNA/protein vaccine possesses the advantages of both underlying approaches and is capable of inducing both humoral (similar to subunit vaccines) and cellular (similar to DNA vaccines) immunity.


Asunto(s)
COVID-19 , Vacunas de ADN , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/uso terapéutico , SARS-CoV-2 , Pandemias , Vacunas de ADN/genética , Vacunas Combinadas , ADN , Anticuerpos Antivirales
7.
Mol Biol ; 55(6): 889-898, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955558

RESUMEN

The development of preventive vaccines became the first order task in the COVID-19 pandemic caused by SARS-CoV-2. This paper reports the construction of the pVAX-RBD plasmid containing the Receptor-Binding Domain (RBD) of the S protein and a unique signal sequence 176 which promotes target protein secretion into the extracellular space thereby increasing the efficiency of humoral immune response activation. A polyglucine-spermidine conjugate (PGS) was used to deliver pVAX-RBD into the cells. The comparative immunogenicity study of the naked pVAX-RBD and pVAX-RBD enclosed in the PGS envelope showed that the latter was more efficient in inducing an immune response in the immunized mice. In particular, RBD-specific antibody titers were shown in ELISA to be no higher than 1 : 1000 in the animals from the pVAX-RBD group and 1 : 42 000, in the pVAX-RBD-PGS group. The pVAX-RBD‒PGS construct effectively induced cellular immune response. Using ELISpot, it has been demonstrated that splenocytes obtained from the immunized animals effectively produced INF-γ in response to stimulation with the S protein-derived peptide pool. The results suggest that the polyglucine-spermidine conjugate-enveloped pVAX-RBD construct may be considered as a promising DNA vaccine against COVID-19.

8.
Mol Biol (Mosk) ; 55(6): 987-998, 2021.
Artículo en Ruso | MEDLINE | ID: mdl-34837703

RESUMEN

The development of preventive vaccines became the first order task in the COVID-19 pandemic caused by SARS-CoV-2. This paper reports the construction of the pVAX-RBD plasmid containing the Receptor-Binding Domain (RBD) of the S protein and a unique signal sequence 176 which promotes target protein secretion into the extracellular space thereby increasing the efficiency of humoral immune response activation. A polyglucine-spermidine conjugate (PGS) was used to deliver pVAX-RBD into the cells. The comparative immunogenicity study of the naked pVAX-RBD and pVAX-RBD enclosed in the PGS envelope showed that the latter was more efficient in inducing an immune response in the immunized mice. In particular, RBD-specific antibody titers were shown in ELISA to be no higher than 1 : 1000 in the animals from the pVAX-RBD group and 1 : 42000, in the pVAX-RBD-PGS group. The pVAX-RBD-PGS construct effectively induced cellular immune response. Using ELISpot, it has been demonstrated that splenocytes obtained from the immunized animals effectively produced INF-y in response to stimulation with the S protein-derived peptide pool. The results suggest that the polyglucine-spermidine conjugate-enveloped pVAX-RBD construct may be considered as a promising DNA vaccine against COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Antivirales , Vacunas contra la COVID-19 , ADN , Humanos , Ratones , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
9.
Biomed Khim ; 67(3): 259-267, 2021 May.
Artículo en Ruso | MEDLINE | ID: mdl-34142533

RESUMEN

Docking and quantum-chemical methods have been used for screening of drug-like compounds from the own database of the Voronezh State University to find inhibitors the SARS-CoV-2 main protease, an important enzyme of the coronavirus responsible for the COVID-19 pandemic. Using the SOL program more than 42000 3D molecular structures were docked into the active site of the main protease, and more than 1000 ligands with most negative values of the SOL score were selected for further processing. For all these top ligands, the protein-ligand binding enthalpy has been calculated using the PM7 semiempirical quantum-chemical method with the COSMO implicit solvent model. 20 ligands with the most negative SOL scores and the most negative binding enthalpies have been selected for further experimental testing. The latter has been made by measurements of the inhibitory activity against the main protease and suppression of SARS-CoV-2 replication in a cell culture. The inhibitory activity \of the compounds was determined using a synthetic fluorescently labeled peptide substrate including the proteolysis site of the main protease. The antiviral activity was tested against SARS-CoV-2 virus in the Vero cell culture. Eight compounds showed inhibitory activity against the main protease of SARS-CoV-2 in the submicromolar and micromolar ranges of the IC50 values. Three compounds suppressed coronavirus replication in the cell culture at the micromolar range of EC50 values and had low cytotoxicity. The found chemically diverse inhibitors can be used for optimization in order to obtain a leader compound, the basis of new direct-acting antiviral drugs against the SARS-CoV-2 coronavirus.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Proteínas no Estructurales Virales
10.
Biochemistry (Mosc) ; 85(7): 781-791, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33040722

RESUMEN

For the first time, the chymosin gene (CYM) of a maral was characterized. Its exon/intron organization was established using comparative analysis of the nucleotide sequence. The CYM mRNA sequence encoding a maral preprochymosin was reconstructed. Nucleotide sequence of the CYM maral mRNA allowed developing an expression vector to ensure production of a recombinant enzyme. Recombinant maral prochymosin was obtained in the expression system of Escherichia coli [strain BL21 (DE3)]. Total milk-coagulation activity (MCA) of the recombinant maral chymosin was 2330 AU/ml. The recombinant maral prochymosin relative activity was 52955 AU/mg. The recombinant maral chymosin showed 100-81% MCA in the temperature range 30-50°C, thermal stability (TS) threshold was 50°C, and the enzyme was completely inactivated at 70°C. Preparations of the recombinant chymosin of a single-humped camel and recombinant bovine chymosin were used as reference samples. Michaelis-Menten constant (Km), turnover number (kcat), and catalytic efficiency (kcat/Km) of the recombinant maral chymosin, were 1.18 ± 0.1 µM, 2.68 ± 0.08 s-1 and 2.27± 0.10 µm M-1·s-1, respectively.


Asunto(s)
Quimosina/genética , Quimosina/metabolismo , Ciervos/genética , Animales , Secuencia de Bases , Quimosina/química , Ciervos/metabolismo , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA