Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
ACS Cent Sci ; 10(5): 1054-1064, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799656

RESUMEN

Current approaches to evaluate molecular complexity use algorithmic complexity, rooted in computer science, and thus are not experimentally measurable. Directly evaluating molecular complexity could be used to study directed vs undirected processes in the creation of molecules, with potential applications in drug discovery, the origin of life, and artificial life. Assembly theory has been developed to quantify the complexity of a molecule by finding the shortest path to construct the molecule from building blocks, revealing its molecular assembly index (MA). In this study, we present an approach to rapidly infer the MA of molecules from spectroscopic measurements. We demonstrate that the MA can be experimentally measured by using three independent techniques: nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS), and infrared spectroscopy (IR). By identifying and analyzing the number of absorbances in IR spectra, carbon resonances in NMR, or molecular fragments in tandem MS, the MA of an unknown molecule can be reliably estimated. This represents the first experimentally quantifiable approach to determining molecular assembly. This paves the way to use experimental techniques to explore the evolution of complex molecules as well as a unique marker of where an evolutionary process has been operating.

2.
Energy Environ Sci ; 16(6): 2603-2610, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37323468

RESUMEN

Due to the increasing energy density demands of battery technology, it is vital to develop electrolytes with high electron storage capacity. Polyoxometalate (POM) clusters can act as electron sponges, storing and releasing multiple electrons and have potential as electron storage electrolytes for flow batteries. Despite this rational design of clusters for high storage ability can not yet be achieved as little is known about the features influencing storage ability. Here we report that the large POM clusters, {P5W30} and {P8W48}, can store up to 23 e- and 28 e- per cluster in acidic aqueous solution, respectively. Our investigations reveal key structural and speciation factors influencing the improved behaviour of these POMs over those previously reported (P2W18). We show, using NMR and MS, that for these polyoxotungstates hydrolysis equilibria for the different tungstate salts is key to explaining unexpected storage trends while the performance limit for {P5W30} and {P8W48}, can be attributed to unavoidable hydrogen generation, evidenced by GC. NMR spectroscopy, in combination with the MS analysis, provided experimental evidence for a cation/proton exchange process during the reduction/reoxidation process of {P5W30} which likely occurs due to this hydrogen generation. Our study offers a deeper understanding of the factors affecting the electron storage ability of POMs and provides insights allowing for further development of these materials for energy storage.

3.
Neuropsychologia ; 183: 108532, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36906221

RESUMEN

The early school years shape a young brain's capability to comprehend and contextualize words within milliseconds of exposure. Parsing word sounds (phonological interpretation) and word recognition (enabling semantic interpretation) are integral to this process. Yet little is known about the causal mechanisms of cortical activity during these early developmental stages. In this study, we aimed to explore these causal mechanisms via dynamic causal modelling of event-related potentials (ERPs) acquired from 30 typically developing children (ages 6-8 years) as they completed a spoken word-picture matching task. Source reconstruction of high-density electroencephalography (128 channels) was used to ascertain differences in whole-brain cortical activity during semantically "congruent" and "incongruent" conditions. Source activations analyzed during the N400 ERP window identified significant regions-of-interest (pFWE<.05) localized primarily in the right hemisphere when contrasting congruent and incongruent word-picture stimuli. Dynamic causal models (DCMs) were tested on source activations in the fusiform gyrus (rFusi), inferior parietal lobule (rIPL), inferior temporal gyrus (rITG) and superior frontal gyrus (rSFG). DCM results indicated that a fully connected bidirectional model with self-(inhibiting) connections over rFusi, rIPL and rSFG provided the highest model evidence, based on exceedance probabilities derived from Bayesian statistical inferences. Connectivity parameters of rITG and rSFG regions from the winning DCM were negatively correlated with behavioural measures of receptive vocabulary and phonological memory (pFDR<.05), such that lower scores on these assessments corresponded with increased connectivity between temporal pole and anterior frontal regions. The findings suggest that children with lower language processing skills required increased recruitment of right hemisphere frontal/temporal areas during task performance.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Masculino , Niño , Femenino , Preescolar , Teorema de Bayes , Semántica , Mapeo Encefálico , Percepción
5.
J Am Chem Soc ; 145(4): 2332-2341, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649125

RESUMEN

Library generation experiments are a key part of the discovery of new materials, methods, and models in chemistry, but the question of how to generate high quality libraries to enable discovery is nontrivial. Herein, we use coordination chemistry to demonstrate the automation of many of the workflows used for library generation in automated hardware including the Chemputer. First, we explore the target-oriented synthesis of three influential coordination complexes, to validate key synthetic operations in our system; second, the generation of focused libraries in chemical and process space; and third, the development of a new workflow for prospecting library formation. This involved Bayesian optimization using a Gaussian process as surrogate model combined with a metric for novelty (or serendipity) quantification based on mass spectrometry data. In this way, we show directed exploration of a process space toward those areas with rarer observations and build a picture of the diversity in product distributions present across the space. We show that this effectively "engineers" serendipity into our search through the unexpected appearance of acetic anhydride, formed in situ, and solvent degradation products as ligands in an isolable series of three Co(III) anhydride complexes.

6.
Angew Chem Int Ed Engl ; 62(1): e202214203, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336660

RESUMEN

Polyoxopalladates (POPs) are a class of self-assembling palladium-oxide clusters that span a variety of sizes, shapes and compositions. The largest of this family, {Pd84 }Ac , is constructed from 14 building units of {Pd6 } and lined on the inner and outer torus by 28 acetate ligands. Due to its high water solubility, large hydrophobic cavity and distinct 1 H NMR fingerprint {Pd84 }Ac is an ideal molecule for exploring supramolecular behaviour with small organic molecules in aqueous media. Molecular visualisation studies highlighted potential binding sites between {Pd84 }Ac and these species. Nuclear Magnetic Resonance (NMR) techniques, including 1 H NMR, 1 H Diffusion Ordered Spectroscopy (DOSY) and Nuclear Overhauser Spectroscopy (NOESY), were employed to study the supramolecular chemistry of this system. Here, we provide conclusive evidence that {Pd84 }Ac forms a 1 : 7 host-guest complex with benzyl viologen (BV2+ ) in aqueous solution.


Asunto(s)
Agua , Agua/química , Espectroscopía de Resonancia Magnética/métodos
7.
Angew Chem Int Ed Engl ; 61(21): e202201672, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257462

RESUMEN

The assembly of nanoscale polyoxometalate (POM) clusters has been dominated by the highly reduced icosahedral {Mo132 } "browns" and the toroidal {Mo154 } "blues" which are 45 % and 18 % reduced, respectively. We hypothesised that there is space for a greater diversity of structures in this immediate reduction zone. Here we show it is possible to make highly reduced mix-valence POMs by presenting new classes of polyoxomolybdates: [MoV 52 MoVI 12 H26 O200 ]42- {Mo64 } and [MoV 40 MoVI 30 H30 O215 ]20- {Mo70 }, 81 % and 57 % reduced, respectively. The {Mo64 } cluster archetype has a super-cube structure and is composed of five different types of building blocks, each arranged in overlayed Archimedean or Platonic polyhedra. The {Mo70 } cluster comprises five tripodal {MoV 6 } and five tetrahedral {MoV 2 MoVI 2 } building blocks alternatively linked to form a loop with a pentagonal star topology. We also show how the reaction yielding the {Mo64 } super-cube can be used in the enrichment of lanthanides which exploit the differences in selectivity in the self-assembly of the polyoxometalates.

8.
J Am Chem Soc ; 143(48): 20059-20063, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812622

RESUMEN

Giant polyoxomolybdates are traditionally synthesized by chemical reduction of molybdate in aqueous solutions, generating complex nanostructures such as the highly symmetrical spherical {Mo102} and {Mo132}, ring-shaped {Mo154} and {Mo176}, and the gigantic protein sized {Mo368}, which combines both positive and negative curvature. These complex polyoxometalates are known to be highly sensitive to reaction conditions and are often difficult to reproduce, especially {Mo368}, which is often produced in yields far below 1%, meaning further investigation has always been limited. While the electrochemical properties of these materials have been studied, their electrochemical synthesis has not been explored. Herein, we demonstrate an alternative reliable synthetic method by means of electrochemistry. By using electrochemical synthesis, we have shown the synthesis of various reported polyoxomolybdates, along with some unreported structures with unique features that have yet to be reported by traditional synthetic methods. The six different giant polyoxomolybdates that were obtained via electrochemical synthesis range from the spherical {Mo102-xFex} and {Mo132} to the ring-shaped {Mo148} and {Mo154-x}, as well as the largest known polyoxometalate {Mo368}, with improved yield (up to 26.1% for {Mo368}), increased reproducibility, and shorter crystallization time compared to chemical reduction methods.

9.
JACS Au ; 1(10): 1572-1587, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723260

RESUMEN

The explosion in the use of machine learning for automated chemical reaction optimization is gathering pace. However, the lack of a standard architecture that connects the concept of chemical transformations universally to software and hardware provides a barrier to using the results of these optimizations and could cause the loss of relevant data and prevent reactions from being reproducible or unexpected findings verifiable or explainable. In this Perspective, we describe how the development of the field of digital chemistry or chemputation, that is the universal code-enabled control of chemical reactions using a standard language and ontology, will remove these barriers allowing users to focus on the chemistry and plug in algorithms according to the problem space to be explored or unit function to be optimized. We describe a standard hardware (the chemical processing programming architecture-the ChemPU) to encompass all chemical synthesis, an approach which unifies all chemistry automation strategies, from solid-phase peptide synthesis, to HTE flow chemistry platforms, while at the same time establishing a publication standard so that researchers can exchange chemical code (χDL) to ensure reproducibility and interoperability. Not only can a vast range of different chemistries be plugged into the hardware, but the ever-expanding developments in software and algorithms can also be accommodated. These technologies, when combined will allow chemistry, or chemputation, to follow computation-that is the running of code across many different types of capable hardware to get the same result every time with a low error rate.

10.
Inorg Chem ; 60(19): 14772-14778, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34549944

RESUMEN

Metal organic polyhedra (MOPs) such as coordination cages and clusters are increasingly utilized across many fields, but their geometrically selective assembly during synthesis is nontrivial. When ligand coordination along these polyhedral edges is arranged in an unsymmetrical mode or the bridging ligand itself is nonsymmetric, a vast combinatorial space of potential isomers exists complicating formation and isolation. Here we describe two generalizable combinatorial methodologies to explore the geometrical space and enumerate the configurational isomers of MOPs with discrimination of the chiral and achiral structures. The methodology has been applied to the case of the octahedron {Bi6Fe13L12} which has unsymmetrical coordination of a carboxylate ligand (L) along its edges. For these polyhedra, the enumeration methodology revealed 186 distinct isomers, including 74 chiral pairs and 38 achiral. To explore the programming of these, we then used a range of ligands to synthesize several configurational isomers. Our analysis demonstrates that ligand halo-substituents influence isomer symmetry and suggests that more symmetric halo-substituted ligands counterintuitively yield lower symmetry isomers. We performed mass spectrometry studies of these {Bi6Fe13L12} clusters to evaluate their stability and aggregation behavior in solution and the gas phase showing that various isomers have different levels of aggregation in solution.

11.
Chemistry ; 27(48): 12327-12334, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34196438

RESUMEN

Determining the relative configuration or enantiomeric excess of a substance may be achieved using NMR spectroscopy by employing chiral shift reagents (CSRs). Such reagents interact noncovalently with the chiral solute, resulting in each chiral form experiencing different magnetic anisotropy; this is then reflected in their NMR spectra. The Keplerate polyoxometalate (POM) is a molybdenum-based, water-soluble, discrete inorganic structure with a pore-accessible inner cavity, decorated by differentiable ligands. Through ligand exchange from the self-assembled nanostructure, a set of chiral Keplerate host molecules has been synthesised. By exploiting the interactions of analyte molecules at the surface pores, the relative configuration of chiral amino alcohol guests (phenylalaninol and 2-amino-1-phenylethanol) in aqueous solvent was establish and their enantiomeric excess was determined by 1 H NMR using shifts of ΔΔδ=0.06 ppm. The use of POMs as chiral shift reagents represents an application of a class that is yet to be well established and opens avenues into aqueous host-guest chemistry with self-assembled recognition agents.


Asunto(s)
Amino Alcoholes , Agua , Cápsulas , Óxidos , Estereoisomerismo
12.
Dalton Trans ; 50(7): 2350-2353, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33564815

RESUMEN

A family of six polyoxometalate-based magnetic compounds were synthesized by anchoring N-oxide type TEMPO radicals onto an Anderson type polyoxometalate cluster. The complexes were structurally characterised by single crystal X-ray diffraction and the intramolecular paramagnetic interactions between TEMPO radicals and Mn ions of the resulting hybrids were investigated in detail by electron paramagnetic resonance and the Evans NMR method.

13.
Angew Chem Int Ed Engl ; 60(14): 7935-7940, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33449408

RESUMEN

Metal-catalyzed C-N cross-coupling generally forms C-N bonds by reductive elimination from metal complexes bearing covalent C- and N-ligands. We have identified a Cu-mediated C-N cross-coupling that uses a dative N-ligand in the bond-forming event, which, in contrast to conventional methods, generates reactive cationic products. Mechanistic studies suggest the process operates via transmetalation of an aryl organoboron to a CuII complex bearing neutral N-ligands, such as nitriles or N-heterocycles. Subsequent generation of a putative CuIII complex enables the oxidative C-N coupling to take place, delivering nitrilium intermediates and pyridinium products. The reaction is general for a range of N(sp) and N(sp2 ) precursors and can be applied to drug synthesis and late-stage N-arylation, and the limitations in the methodology are mechanistically evidenced.

14.
J Am Chem Soc ; 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203207

RESUMEN

Room temperature calorimetry methods were developed to describe the energy landscapes of six polyoxometalates (POMs), Li-U24, Li-U28, K-U28, Li/K-U60, Mo132, and Mo154, in terms of three components: enthalpy of dissolution (ΔHdiss), enthalpy of formation of aqueous POMs (ΔHf,(aq)), and enthalpy of formation of POM crystals (ΔHf,(c)). ΔHdiss is controlled by a combination of cation solvation enthalpy and the favorability of cation interactions with binding sites on the POM. In the case of the four uranyl peroxide POMs studied, clusters with hydroxide bridges have lower ΔHf,(aq) and are more stable than those containing only peroxide bridges. In general for POMs, the combination of calorimetric results and synthetic observations suggest that spherical topologies may be more stable than wheel-like clusters, and ΔHf,(aq) can be accurately estimated using only ΔHf,(c) values owing to the dominance of the clusters in determining the energetics of POM crystals.

15.
ACS Cent Sci ; 6(9): 1587-1593, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999934

RESUMEN

The exploration of complex multicomponent chemical reactions leading to new clusters, where discovery requires both molecular self-assembly and crystallization, is a major challenge. This is because the systematic approach required for an experimental search is limited when the number of parameters in a chemical space becomes too large, restricting both exploration and reproducibility. Herein, we present a synthetic strategy to systematically search a very large set of potential reactions, using an inexpensive, high-throughput platform that is modular in terms of both hardware and software and is capable of running multiple reactions with in-line analysis, for the automation of inorganic and materials chemistry. The platform has been used to explore several inorganic chemical spaces to discover new and reproduce known tungsten-based, mixed transition-metal polyoxometalate clusters, giving a digital code that allows the easy repeat synthesis of the clusters. Among the many species identified in this work, the most significant is the discovery of a novel, purely inorganic W24FeIII-superoxide cluster formed under ambient conditions. The modular wheel platform was employed to undertake two chemical space explorations, producing compounds 1-4: (C2H8N)10Na2[H6Fe(O2)W24O82] (1, {W24Fe}), (C2H8N)72Na16[H16Co8W200O660(H2O)40] (2, {W200Co8}), (C2H8N)72Na16[H16Ni8W200O660(H2O)40] (3, {W200Ni8}), and (C2H8N)14[H26W34V4O130] (4, {W34V4}), along with many other known species, such as simple Keggin clusters and 1D {W11M2+} chains.

16.
J Am Chem Soc ; 142(41): 17508-17514, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32965108

RESUMEN

Polyoxometalate molybdenum blue (MB) complexes typically exist as discrete multianionic clusters and are composed of repeating Mo building units. MB wheels such as {Mo176} and {Mo154} are made from pentagon-centered {Mo8} building blocks joined by equal number of {Mo1} units as loin, and {Mo2} dimer units as skirt along the ring edge, with the ring sizes of the MB wheels modulated by the {Mo2} units. Herein we report a new class of contracted lanthanide-doped MB structures that have replaced all the {Mo2} units with lanthanide ions on the inner rim, giving the general formula {Mo90Ln10}. We show three examples of this new decameric {Mo90Ln10} (Ln = La, Ce, and Pr) framework synthesized by high temperature reduction and demonstrate that later Ln ions result in {Mo92Ln9} (Ln = Nd, Sm), conserving one {Mo2} linker unit in its structure, as a consequence of the lanthanide contraction. Remarkably the {Mo90Ln10} compounds are the first examples of charge-neutral molybdate wheels as confirmed by BVS, solubility experiments, and redox titrations. We detail our full synthetic optimization for the isolation of these clusters and complete characterization by X-ray, TGA, UV-vis, and ICP studies. Finally, we show that this fine-tuned self-assembly process can be utilized to selectively enrich Ln-MB wheels for effective separation of lanthanides.

17.
Angew Chem Int Ed Engl ; 59(28): 11256-11261, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32419277

RESUMEN

We present a chemical discovery robot for the efficient and reliable discovery of supramolecular architectures through the exploration of a huge reaction space exceeding ten billion combinations. The system was designed to search for areas of reactivity found through autonomous selection of the reagent types, amounts, and reaction conditions aiming for combinations that are reactive. The process consists of two parts where reagents are mixed together, choosing from one type of aldehyde, one amine and one azide (from a possible family of two amines, two aldehydes and four azides) with different volumes, ratios, reaction times, and temperatures, whereby the reagents are passed through a copper coil reactor. Next, either cobalt or iron is added, again from a large number of possible quantities. The reactivity was determined by evaluating differences in pH, UV-Vis, and mass spectra before and after the search was started. The algorithm was focused on the exploration of interesting regions, as defined by the outputs from the sensors, and this led to the discovery of a range of 1-benzyl-(1,2,3-triazol-4-yl)-N-alkyl-(2-pyridinemethanimine) ligands and new complexes: [Fe(L1 )2 ](ClO4 )2 (1); [Fe(L2 )2 ](ClO4 )2 (2); [Co2 (L3 )2 ](ClO4 )4 (3); [Fe2 (L3 )2 ](ClO4 )4 (4), which were crystallised and their structure confirmed by single-crystal X-ray diffraction determination, as well as a range of new supramolecular clusters discovered in solution using high-resolution mass spectrometry.

18.
Chem Sci ; 11(9): 2388-2393, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-34084401

RESUMEN

Eight alkene-functionalized molybdenum-based spherical Keplerate-type (inorganic fullerene) structures have been obtained via both direct and multistep synthetic approaches. Driven by the opportunity to design unique host-guest interactions within hydrophobic, π-electron rich confined environments, we have synthesised {(NH4)42[Mo132O372(L)30(H2O)72]}, where L = (1) acrylic acid, (2) crotonic acid, (3) methacrylic acid, (4) tiglic acid, (5) 3-butenoic acid, (6) 4-pentenoic acid, (7) 5-hexenoic acid, and (8) sorbic acid. The compounds, which are obtained in good yield (10-40%), contain 30 carboxylate-coordinated alkene ligands which create a central cavity with hydrophobic character. Extensive Nuclear Magnetic Resonance (NMR) spectroscopy studies contribute significantly to the complete characterisation of the structures obtained, including both 1D and 2D measurements. In addition, single-crystal X-ray crystallography and subsequently-generated electron density maps are employed to highlight the distribution in ligand tail positions. These alkene-containing structures are shown to effectively encapsulate small alkyl thiols (1-propanethiol (A), 2-propanethiol (B), 1-butanethiol (C), 2-butanethiol (D) and 2-methyl-1-propanethiol (E)) as guests within the central cavity in aqueous solution. The hydrophobically driven clustering of up to 6 equivalents of volatile thiol guests within the central cavity of the Keplerate-type structure results in effective thermal protection, preventing evaporation at elevated temperatures (ΔT ≈ 25 K).

19.
Chem Sci ; 12(7): 2427-2432, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34164008

RESUMEN

The precise control over the formation of complex nanostructures, e.g. polyoxometalates (POMs), at the sub-nanoscale is challenging but critical if non-covalent architectures are to be designed. Combining biologically-evolved systems with inorganic nanostructures could lead to sequence-mediated assembly. Herein, we exploit oligopeptides as multidentate structure-directing ligands via metal-coordination and hydrogen bonded interactions to modulate the self-assembly of POM superstructures. Six oligopeptides (GH, AH, SH, G2H, G4H and G5H) are incorporated into the cavities of Molybdenum Blue (MB) POM nanowheels. It is found that the helicity of the nanowheel can be readily switched (Δ to Λ) by simply altering the N-terminal amino acid on the peptide chain rather than their overall stereochemistry. We also reveal a delicate balance between the Mo-coordination and the hydrogen bonds found within the internal cavity of the inorganic nanowheels which results in the sequence mediated formation of two unprecedented asymmetrical nanowheel frameworks: {Mo122Ce5} and {Mo126Ce4}.

20.
Clin Cancer Res ; 26(7): 1700-1711, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31831562

RESUMEN

PURPOSE: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN: In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS: Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS: Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.


Asunto(s)
Antineoplásicos/farmacología , Activadores de Enzimas/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Sesquiterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA