Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(1): 015001, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678657

RESUMEN

The role of nonadiabatic electrons in regulating the hydrogenic isotope-mass scaling of gyrokinetic turbulence in tokamak fusion plasmas is assessed in the transition from ion-dominated core transport regimes to electron-dominated edge transport regimes. We propose a new isotope-mass scaling law that describes the electron-to-ion mass-ratio dependence of turbulent ion and electron energy fluxes. The mass-ratio dependence arises from the nonadiabatic response associated with fast electron parallel motion and plays a key role in altering-and in the case of the DIII-D edge, favorably reversing-the naive gyro-Bohm scaling behavior. In the reversed regime hydrogen energy fluxes are larger than deuterium fluxes, which is the opposite of the naive prediction.

2.
Phys Rev Lett ; 111(5): 055005, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952414

RESUMEN

The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

3.
Phys Rev Lett ; 106(23): 235003, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21770513

RESUMEN

In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA