Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Genet ; 55(2): 178-186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658435

RESUMEN

Precision medicine promises to transform healthcare for groups and individuals through early disease detection, refining diagnoses and tailoring treatments. Analysis of large-scale genomic-phenotypic databases is a critical enabler of precision medicine. Although Asia is home to 60% of the world's population, many Asian ancestries are under-represented in existing databases, leading to missed opportunities for new discoveries, particularly for diseases most relevant for these populations. The Singapore National Precision Medicine initiative is a whole-of-government 10-year initiative aiming to generate precision medicine data of up to one million individuals, integrating genomic, lifestyle, health, social and environmental data. Beyond technologies, routine adoption of precision medicine in clinical practice requires social, ethical, legal and regulatory barriers to be addressed. Identifying driver use cases in which precision medicine results in standardized changes to clinical workflows or improvements in population health, coupled with health economic analysis to demonstrate value-based healthcare, is a vital prerequisite for responsible health system adoption.


Asunto(s)
Atención a la Salud , Medicina de Precisión , Humanos , Singapur , Medicina de Precisión/métodos , Asia
2.
Sci Rep ; 12(1): 14984, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056154

RESUMEN

Research on working dogs is growing rapidly due to increasing global demand. Here we report genome scanning of the risk of puppies being eliminated for behavioral reasons prior to entering the training phase of the US Transportation Security Administration's (TSA) canine olfactory detection breeding and training program through 2013. Elimination of dogs for behavioral rather than medical reasons was based on evaluations at three, six, nine and twelve months after birth. Throughout that period, the fostered dogs underwent standardized behavioral tests at TSA facilities, and, for a subset of tests, dogs were tested in four different environments. Using methods developed for family studies, we performed a case-control genome wide association study (GWAS) of elimination due to behavioral observation and testing results in a cohort of 528 Labrador Retrievers (2002-2013). We accounted for relatedness by including the pedigree as a covariate and maximized power by including individuals with phenotype, but not genotype, data (approximately half of this cohort). We determined genome wide significance based on Bonferroni adjustment of two quasi-likelihood score tests optimized for either small or nearly-fully penetrant effect sizes. Six loci were significant and five suggestive, with approximately equal numbers of loci for the two tests and frequencies of loci with single versus multiple mapped markers. Several loci implicate a single gene, including CHD2, NRG3 and PDE1A which have strong relevance to behavior in humans and other species. We briefly discuss how expanded studies of canine breeding programs could advance understanding of learning and performance in the mammalian life course. Although human interactions and other environmental conditions will remain critical, our findings suggest genomic breeding selection could help improve working dog populations.


Asunto(s)
Cruzamiento , Estudio de Asociación del Genoma Completo , Animales , Perros , Genoma , Genotipo , Humanos , Mamíferos , Linaje
3.
Front Chem ; 8: 110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195221

RESUMEN

The TBX2 transcription factor plays critical roles during embryonic development and it is overexpressed in several cancers, where it contributes to key oncogenic processes including the promotion of proliferation and bypass of senescence. Importantly, based on compelling biological evidences, TBX2 has been considered as a potential target for new anticancer therapies. There has therefore been a substantial interest to identify molecules with TBX2-modulatory activity, but no such substance has been found to date. Here, we adopt a targeted approach based on a reverse-affinity procedure to identify the ability of chromomycins A5 (CA5) and A6 (CA6) to interact with TBX2. Briefly, a TBX2-DNA-binding domain recombinant protein was N-terminally linked to a resin, which in turn, was incubated with either CA5 or CA6. After elution, bound material was analyzed by UPLC-MS and CA5 was recovered from TBX2-loaded resins. To confirm and quantify the affinity (KD) between the compounds and TBX2, microscale thermophoresis analysis was performed. CA5 and CA6 modified the thermophoretic behavior of TBX2, with a KD in micromolar range. To begin to understand whether these compounds exerted their anti-cancer activity through binding TBX2, we next analyzed their cytotoxicity in TBX2 expressing breast carcinoma, melanoma and rhabdomyosarcoma cells. The results show that CA5 was consistently more potent than CA6 in all tested cell lines with IC50 values in the nM range. Of the cancer cell types tested, the melanoma cells were most sensitive. The knockdown of TBX2 in 501mel melanoma cells increased their sensitivity to CA5 by up to 5 times. Furthermore, inducible expression of TBX2 in 501mel cells genetically engineered to express TBX2 in the presence of doxycycline, were less sensitive to CA5 than the control cells. Together, the data presented in this study suggest that, in addition to its already recognized DNA-binding properties, CA5 may be binding the transcription factor TBX2, and it can contribute to its cytotoxic activity.

4.
Gene ; 726: 144223, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31669645

RESUMEN

TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.


Asunto(s)
Enfermedad/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Dominio T Box/genética , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Factores de Transcripción/genética
5.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626772

RESUMEN

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Asunto(s)
Genética de Población , Genoma Humano/genética , Selección Genética , Secuenciación Completa del Genoma , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Malasia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética , Singapur/epidemiología
6.
Int J Mol Sci ; 18(3)2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28304362

RESUMEN

Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Memoria a Largo Plazo , Reconocimiento Visual de Modelos , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Nat Commun ; 7: 10494, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833098

RESUMEN

Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Estudio de Asociación del Genoma Completo , Leptina/sangre , Leptina/metabolismo , Tejido Adiposo/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Leptina/genética , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Técnicas de Cultivo de Tejidos
8.
Nat Commun ; 7: 10495, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833246

RESUMEN

To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.


Asunto(s)
Adiposidad/genética , Predisposición Genética a la Enfermedad , Cardiopatías/genética , Sitios de Carácter Cuantitativo/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos
9.
Gene ; 576(1 Pt 2): 256-60, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26476291

RESUMEN

BACKGROUND: Breast cancer (BC) is primarily considered a genetic disorder with a complex interplay of factors including age, gender, ethnicity, family history, personal history and lifestyle with associated hormonal and non-hormonal risk factors. The SNP rs2910164 in miR146a (a G to C polymorphism) was previously associated with increased risk of BC in cases with at least a single copy of the C allele in breast cancer, though results in other cancers and populations have shown significant variation. METHODS: In this study, we examined this SNP in an Australian sporadic breast cancer population of 160 cases and matched controls, with a replicate population of 403 breast cancer cases using High Resolution Melting. RESULTS: Our analysis indicated that the rs2910164 polymorphism is associated with breast cancer risk in both primary and replicate populations (p=0.03 and 0.0013, respectively). In contrast to the results of familial breast cancer studies, however, we found that the presence of the G allele of rs2910164 is associated with increased cancer risk, with an OR of 1.77 (95% CI 1.40-2.23). CONCLUSIONS: The microRNA miR146a has a potential role in the development of breast cancer and the effects of its SNPs require further inquiry to determine the nature of their influence on breast tissue and cancer.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Anciano , Australia , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad
10.
PLoS Genet ; 11(10): e1005593, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26474483

RESUMEN

Multiphenotype genome-wide association studies (GWAS) may reveal pleiotropic genes, which would remain undetected using single phenotype analyses. Analysis of large pedigrees offers the added advantage of more accurately assessing trait heritability, which can help prioritise genetically influenced phenotypes for GWAS analysis. In this study we performed a principal component analysis (PCA), heritability (h2) estimation and pedigree-based GWAS of 37 cardiovascular disease -related phenotypes in 330 related individuals forming a large pedigree from the Norfolk Island genetic isolate. PCA revealed 13 components explaining >75% of the total variance. Nine components yielded statistically significant h2 values ranging from 0.22 to 0.54 (P<0.05). The most heritable component was loaded with 7 phenotypic measures reflecting metabolic and renal dysfunction. A GWAS of this composite phenotype revealed statistically significant associations for 3 adjacent SNPs on chromosome 1p22.2 (P<1x10-8). These SNPs form a 42kb haplotype block and explain 11% of the genetic variance for this renal function phenotype. Replication analysis of the tagging SNP (rs1396315) in an independent US cohort supports the association (P = 0.000011). Blood transcript analysis showed 35 genes were associated with rs1396315 (P<0.05). Gene set enrichment analysis of these genes revealed the most enriched pathway was purine metabolism (P = 0.0015). Overall, our findings provide convincing evidence for a major pleiotropic effect locus on chromosome 1p22.2 influencing risk of renal dysfunction via purine metabolism pathways in the Norfolk Island population. Further studies are now warranted to interrogate the functional relevance of this locus in terms of renal pathology and cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/patología , Femenino , Haplotipos , Humanos , Masculino , Melanesia , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal
12.
Investig Genet ; 6: 11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26339467

RESUMEN

BACKGROUND: The Pacific Oceania region was one of the last regions of the world to be settled via human migration. Here we outline a settlement of this region that has given rise to a uniquely admixed population. The current Norfolk Island population has arisen from a small number of founders with mixed Caucasian and Polynesian ancestry, descendants of a famous historical event. The 'Mutiny on the Bounty' has been told in history books, songs and the big screen, but recently this story can be portrayed through comprehensive molecular genetics. Written history details betrayal and murder leading to the founding of Pitcairn Island by European mutineers and the Polynesian women who left Tahiti with them. Investigation of detailed genealogical records supports historical accounts. FINDINGS: Using genetics, we show distinct maternal Polynesian mitochondrial lineages in the present day population, as well as a European centric Y-chromosome phylogeny. These results comprehensively characterise the unique gender-biased admixture of this genetic isolate and further support the historical records relating to Norfolk Island. CONCLUSIONS: Our results significantly refine previous population genetic studies investigating Polynesian versus Caucasian diversity in the Norfolk Island population and add information that is beneficial to future disease and gene mapping studies.

13.
J Nutrigenet Nutrigenomics ; 8(1): 44-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26112879

RESUMEN

BACKGROUND/AIM: Total fat intake has an important impact on the low-density lipoprotein (LDL) peak particle diameter (LDL-PPD) and may interact with nutrient-sensitive single nucleotide polymorphisms (SNPs). The objective was to examine whether there is suggestive evidence of SNP × dietary fat intake interaction effects influencing the LDL-PPD in the Quebec Family Study (QFS) in order to generate hypotheses to be tested in larger studies. METHODS: SNPs from a genome-wide association study (GWAS) using Illumina Human610-Quad BeadChip, total fat intake derived from a 3-day weighted food record, and SNP × total fat intake interaction effects were examined on LDL-PPD in 541 QFS subjects. RESULTS: The GWAS analyses 29 identified independent SNP × total fat intake interaction effects on the LDL-PPD at p < 10(-5), including SNPs in the following genes: ABCG2, CPA3, FNBP1, KCNQ3, NBAS, NCALD, OPRL1, NKAIN2, SH3BGRL2, SOX5, and SUSD4. CONCLUSIONS: This observational study suggests that multiple SNPs interact with dietary fat intake to influence variation in the LDL-PPD.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Estudio de Asociación del Genoma Completo , Lipoproteínas LDL/sangre , Adulto , Registros de Dieta , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Quebec
14.
Circ Cardiovasc Genet ; 7(6): 854-863, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25363705

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) is the most common cause of death in the United States and is associated with a high economic burden. Prevention of CVD focuses on controlling or improving the lipid profile of patients at risk. The human lipidome is made up of thousands of ubiquitous lipid species. By studying biologically simple canonical lipid species, we investigated whether the lipidome is genetically redundant and whether its genetic influences can provide clinically relevant clues of CVD risk. METHODS AND RESULTS: We performed a genetic study of the human lipidome in 1212 individuals from 42 extended Mexican American families. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing 319 unique species. Using variance component-based heritability analyses and bivariate trait analyses, we detected significant genetic influences on each lipid assayed. Median heritability of the plasma lipid species was 0.37. Hierarchical clustering based on complex genetic correlation patterns identified 12 genetic clusters that characterized the plasma lipidome. These genetic clusters were differentially but consistently associated with risk factors of CVD, including central obesity, obesity, type 2 diabetes mellitus, raised serum triglycerides, and metabolic syndrome. Also, these clusters consistently predicted occurrence of cardiovascular deaths during follow-up. CONCLUSIONS: The human plasma lipidome is heritable. Shared genetic influences reduce the dimensionality of the human lipidome into clusters that are associated with risk factors of CVD.


Asunto(s)
Enfermedades Cardiovasculares/genética , Lípidos/sangre , Adulto , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Espectrometría de Masas , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Americanos Mexicanos/genética , Persona de Mediana Edad , Obesidad/epidemiología , Obesidad/genética , Prevalencia , Factores de Riesgo
15.
J Lipid Res ; 55(5): 939-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24627127

RESUMEN

Plasma lipidome is now increasingly recognized as a potentially important marker of chronic diseases, but the exact extent of its contribution to the interindividual phenotypic variability in family studies is unknown. Here, we used the rich data from the ongoing San Antonio Family Heart Study (SAFHS) and developed a novel statistical approach to quantify the independent and additive value of the plasma lipidome in explaining metabolic syndrome (MS) variability in Mexican American families recruited in the SAFHS. Our analytical approach included two preprocessing steps: principal components analysis of the high-resolution plasma lipidomics data and construction of a subject-subject lipidomic similarity matrix. We then used the Sequential Oligogenic Linkage Analysis Routines software to model the complex family relationships, lipidomic similarities, and other important covariates in a variance components framework. Our results suggested that even after accounting for the shared genetic influences, indicators of lipemic status (total serum cholesterol, TGs, and HDL cholesterol), and obesity, the plasma lipidome independently explained 22% of variability in the homeostatic model of assessment-insulin resistance trait and 16% to 22% variability in glucose, insulin, and waist circumference. Our results demonstrate that plasma lipidomic studies can additively contribute to an understanding of the interindividual variability in MS.


Asunto(s)
Biología Computacional , Lípidos/sangre , Síndrome Metabólico/sangre , Síndrome Metabólico/epidemiología , Americanos Mexicanos/estadística & datos numéricos , Linaje , Adulto , Femenino , Humanos , Masculino , Síndrome Metabólico/genética , Americanos Mexicanos/genética , Fenotipo , Análisis de Componente Principal
16.
Obesity (Silver Spring) ; 22(3): 875-81, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23794238

RESUMEN

OBJECTIVES: Genome wide association studies have shown 32 loci to influence BMI in European-American adults but replication in other studies is inconsistent and may be attributed to gene-by-age effects. The aims of this study were to determine if the influence of the summed risk score of these 32 loci (GRS) on BMI differed across age from birth to 40 years, and to determine if additive genetic effects other than those in the GRS differed by age. METHODS: Serial measures of BMI were calculated at 0, 1, 3, 6, 9, 12, 18, and 28 months, and 4, 7, 11, 15, 19, 23, 30, and 40 years for 1,176 (605 females, 571 males) European-American participants in the Fels Longitudinal Study. SOLAR was used for genetic analyses. RESULTS: GRS was significant (P < 0.05) at ages: 6, 9 months, 4-15 years, and 23-40 years. Remaining additive genetic effects independently influenced BMI (P < 5.3 × 10(-5) , 0.40 < h(2) < 0.76). Some genetic correlations between ages were not significant. Differential GRS effects did not retain significance after multiple comparisons adjustments. CONCLUSIONS: While well-known BMI variants do not appear to have significant differential effects, other additive genes differ over the lifespan.


Asunto(s)
Envejecimiento , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Obesidad/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Sitios Genéticos , Humanos , Lactante , Estudios Longitudinales , Masculino , Ohio , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Adulto Joven
17.
Obesity (Silver Spring) ; 22(3): 950-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23929697

RESUMEN

OBJECTIVE: Waist circumference (WC), the clinical marker of central obesity, is gaining popularity as a screening tool for type 2 diabetes (T2D). While there is epidemiologic evidence favoring the WC-T2D association, its biological substantiation is generally weak. Our objective was to determine the independent association of plasma lipid repertoire with WC. METHODS: Samples and data from the San Antonio Family Heart Study of 1208 Mexican Americans from 42 extended families were used. Association of plasma lipidomic profiles with the cross-sectionally assessed WC was determined. Plasma lipidomic profiling entailed liquid chromatography with mass spectrometry. Statistical analyses included multivariable polygenic regression models and bivariate trait analyses using the SOLAR software. RESULTS: After adjusting for age and sex interactions, body mass index, homeostasis model of assessment-insulin resistance, total cholesterol, triglycerides, high density lipoproteins and use of lipid lowering drugs, dihydroceramides as a class were associated with WC. Dihydroceramide species 18:0, 20:0, 22:0, and 24:1 were significantly associated and genetically correlated with WC. Two sphingomyelin species (31:1 and 41:1) were also associated with WC. CONCLUSIONS: Plasma dihydroceramide levels independently associate with WC. Thus, high resolution plasma lipidomic studies can provide further credence to the biological underpinnings of the association of WC with T2D.


Asunto(s)
Ceramidas/sangre , Diabetes Mellitus Tipo 2/etnología , Americanos Mexicanos , Obesidad/etnología , Circunferencia de la Cintura , Adulto , Glucemia , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etnología , Colesterol/sangre , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Obesidad/sangre , Prevalencia , Encuestas y Cuestionarios , Texas/epidemiología , Triglicéridos/sangre , Adulto Joven
18.
Am J Hum Genet ; 93(6): 1087-99, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314549

RESUMEN

Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.


Asunto(s)
Enfermedades Cardiovasculares/genética , Mapeo Cromosómico , Expresión Génica , Sitios de Carácter Cuantitativo , Enfermedades Cardiovasculares/metabolismo , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Melanesia , Fenotipo , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas , Carácter Cuantitativo Heredable , Factores de Riesgo , Transcripción Genética
19.
Hum Hered ; 75(2-4): 175-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24081233

RESUMEN

OBJECTIVE: To test the hypothesis that the statistical effect of obesity-related genetic variants on adulthood adiposity traits depends on birth year. METHODS: The study sample included 907 related, non-Hispanic White participants in the Fels Longitudinal Study, born between 1901 and 1986, and aged 25-64.99 years (474 females; 433 males) at the time of measurement. All had both genotype data from which a genetic risk score (GRS) composed of 32 well-replicated obesity-related common single nucleotide polymorphisms was created, and phenotype data [including body mass index (BMI), waist circumference, and the sum of four subcutaneous skinfolds]. Maximum likelihood-based variance components analysis was used to estimate trait heritabilities, main effects of GRS and birth year, GRS-by-birth year interaction, sex, and age. RESULTS: Positive GRS-by-birth year interaction effects were found for BMI (p < 0.001), waist circumference (p = 0.007), and skinfold thickness (p < 0.007). For example, each one-allele increase in GRS was estimated to result in a 0.16 increase in BMI among males born in 1930 compared to a 0.47 increase among those born in 1970. CONCLUSIONS: These novel findings suggest the influence of common obesity susceptibility variants has increased during the obesity epidemic.


Asunto(s)
Adiposidad/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Obesidad/genética , Parto/genética , Adulto , Índice de Masa Corporal , Femenino , Interacción Gen-Ambiente , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Circunferencia de la Cintura/genética
20.
Hypertension ; 62(3): 621-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23798346

RESUMEN

Both as a component of metabolic syndrome and as an independent entity, hypertension poses a continued challenge with regard to its diagnosis, pathogenesis, and treatment. Previous studies have documented connections between hypertension and indicators of lipid metabolism. Novel technologies, such as plasma lipidomic profiling, promise a better understanding of disorders in which there is a derangement of the lipid metabolism. However, association of plasma lipidomic profiles with hypertension in a high-risk population, such as Mexican Americans, has not been evaluated before. Using the rich data and sample resource from the ongoing San Antonio Family Heart Study, we conducted plasma lipidomic profiling by combining high-performance liquid chromatography with tandem mass spectroscopy to characterize 319 lipid species in 1192 individuals from 42 large and extended Mexican American families. Robust statistical analyses using polygenic regression models, liability threshold models, and bivariate trait analyses implemented in the SOLAR software were conducted after accounting for obesity, insulin resistance, and relative abundance of various lipoprotein fractions. Diacylglycerols, in general, and the DG 16:0/22:5 and DG 16:0/22:6 lipid species, in particular, were significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), as well as liability of incident hypertension measured during 7140.17 person-years of follow-up. Four lipid species, including the DG 16:0/22:5 and DG 16:0/22:6 species, showed significant genetic correlations with the liability of hypertension in bivariate trait analyses. Our results demonstrate the value of plasma lipidomic profiling in the context of hypertension and identify disturbance of diacylglycerol metabolism as an independent biomarker of hypertension.


Asunto(s)
Diglicéridos/sangre , Hipertensión/sangre , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Americanos Mexicanos , Adulto , Anciano , Cromatografía Líquida de Alta Presión , Estudios Transversales , Femenino , Humanos , Hipertensión/etnología , Resistencia a la Insulina/etnología , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA