Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 23065, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845286

RESUMEN

Spatial systems that experience congestion can be modeled as weighted networks whose weights dynamically change over time with the redistribution of flows. This is particularly true for urban transportation networks. The aim of this work is to find appropriate network measures that are able to detect critical zones for traffic congestion and bottlenecks in a transportation system. We propose for both single and multi-layered networks a path-based measure, called dynamical efficiency, which computes the travel time differences under congested and free-flow conditions. The dynamical efficiency quantifies the reachability of a location embedded in the whole urban traffic condition, in lieu of a myopic description based on the average speed of single road segments. In this way, we are able to detect the formation of congestion seeds and visualize their evolution in time as well-defined clusters. Moreover, the extension to multilayer networks allows us to introduce a novel measure of centrality, which estimates the expected usage of inter-modal junctions between two different transportation means. Finally, we define the so-called dilemma factor in terms of number of alternatives that an interconnected transportation system offers to the travelers in exchange for a small increase in travel time. We find macroscopic relations between the percentage of extra-time, number of alternatives and level of congestion, useful to quantify the richness of trip choices that a city offers. As an illustrative example, we show how our methods work to study the real network of a megacity with probe traffic data.

2.
Sci Rep ; 10(1): 4876, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184458

RESUMEN

We study the dynamical process of congestion formation for large-scale urban networks by exploring a unique dataset of taxi movements in a megacity. We develop a dynamic model based on a reaction and a diffusion term that properly reproduces the cascade phenomena of traffic. The interaction of these two terms brings the values of the speeds on road network in self-organized patterns and it reveals an elegant physical law that reproduces the dynamics of congestion with very few parameters. The results presented show a promising match with an available real data set of link speeds estimated from more than 40 millions of GPS coordinates per day of about 20,000 taxis in Shenzhen, China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA