Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 7730, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231983

RESUMEN

Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients. CBD delays motor decline and neurodegenerative signs, improves social deficits and breathing abnormalities, decreases thermally induced seizures, and improves neuropathology in affected brain regions. Mechanistically, we identify peroxisome proliferator-activated receptor gamma (PPARγ) as a key nuclear receptor mediating CBD's beneficial effects, while also providing proof of dysregulated PPARγ expression and activity as a common feature in both mouse neurons and fibroblasts from LS patients. Taken together, our results provide the first evidence for CBD as a potential treatment for LS.


Asunto(s)
Cannabidiol , Enfermedades Mitocondriales , PPAR gamma , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/genética , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética
2.
J Neurosci ; 44(39)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39168654

RESUMEN

Growth-associated protein of 43 kDa (GAP43) is a key cytoskeleton-associated component of the presynaptic terminal that facilitates neuroplasticity. Downregulation of GAP43 expression has been associated to various psychiatric conditions in humans and evokes hippocampus-dependent memory impairments in mice. Despite the extensive studies conducted on hippocampal GAP43 in past decades, however, very little is known about its roles in modulating the excitatory versus inhibitory balance in other brain regions. We recently generated conditional knock-out mice in which the Gap43 gene was selectively inactivated in either telencephalic glutamatergic neurons (Gap43fl/fl ;Nex1Cre mice, hereafter Glu-GAP43-/- mice) or forebrain GABAergic neurons (Gap43fl/fl ;Dlx5/6Cre mice, hereafter GABA-GAP43-/- mice). Here, we show that Glu-GAP43-/- but not GABA-GAP43-/- mice of either sex show a striking hyperactive phenotype when exposed to a novel environment. This behavioral alteration of Glu-GAP43-/- mice was linked to a selective activation of dorsal-striatum neurons, as well as to an enhanced corticostriatal glutamatergic transmission and an abrogation of corticostriatal endocannabinoid-mediated long-term depression. In line with these observations, GAP43 was abundantly expressed in corticostriatal glutamatergic terminals of wild-type mice. The novelty-induced hyperactive phenotype of Glu-GAP43-/- mice was abrogated by chemogenetically inhibiting corticostriatal afferences with a Gi-coupled "designer receptor exclusively activated by designer drugs" (DREADDs), thus further supporting that novelty-induced activity is controlled by GAP43 at corticostriatal excitatory projections. Taken together, these findings show an unprecedented regulatory role of GAP43 in the corticostriatal circuitry and provide a new mouse model with a delimited neuronal-circuit alteration for studying novelty-induced hyperactivity, a phenotypic shortfall that occurs in diverse psychiatric diseases.


Asunto(s)
Cuerpo Estriado , Proteína GAP-43 , Ratones Noqueados , Animales , Ratones , Masculino , Cuerpo Estriado/metabolismo , Femenino , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Hipercinesia/metabolismo , Hipercinesia/genética , Terminales Presinápticos/metabolismo , Conducta Exploratoria/fisiología , Ratones Endogámicos C57BL , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología
3.
Nat Commun ; 15(1): 7103, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155299

RESUMEN

Emotions and behavior can be affected by social chemosignals from conspecifics. For instance, olfactory signals from stressed individuals induce stress-like physiological and synaptic changes in naïve partners. Direct stress also alters cognition, but the impact of socially transmitted stress on memory processes is currently unknown. Here we show that exposure to chemosignals produced by stressed individuals is sufficient to impair memory retrieval in unstressed male mice. This requires astrocyte control of information in the olfactory bulb mediated by mitochondria-associated CB1 receptors (mtCB1). Targeted genetic manipulations, in vivo Ca2+ imaging and behavioral analyses reveal that mtCB1-dependent control of mitochondrial Ca2+ dynamics is necessary to process olfactory information from stressed partners and to define their cognitive consequences. Thus, olfactory bulb astrocytes provide a link between social odors and their behavioral meaning.


Asunto(s)
Astrocitos , Cognición , Odorantes , Bulbo Olfatorio , Estrés Psicológico , Animales , Masculino , Astrocitos/metabolismo , Bulbo Olfatorio/metabolismo , Ratones , Cognición/fisiología , Mitocondrias/metabolismo , Receptor Cannabinoide CB1/metabolismo , Ratones Endogámicos C57BL , Calcio/metabolismo , Conducta Social , Memoria/fisiología , Olfato/fisiología , Conducta Animal/fisiología
4.
Nat Commun ; 15(1): 6842, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122700

RESUMEN

Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.


Asunto(s)
Astrocitos , Cognición , Glucólisis , Ácido Láctico , Ratones Noqueados , Serina , Animales , Masculino , Astrocitos/metabolismo , Cognición/fisiología , Ratones , Ácido Láctico/metabolismo , Serina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Hipocampo/metabolismo , Sinapsis/metabolismo , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
5.
Curr Biol ; 34(9): 1918-1929.e5, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38636514

RESUMEN

The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.


Asunto(s)
Ingestión de Líquidos , Corteza Insular , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Masculino , Ratones , Ingestión de Líquidos/fisiología , Corteza Insular/fisiología , Cannabinoides/metabolismo , Cannabinoides/farmacología , Neuronas/fisiología , Neuronas/metabolismo , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/metabolismo
6.
Nat Commun ; 15(1): 3443, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658557

RESUMEN

The hypothalamus contains a remarkable diversity of neurons that orchestrate behavioural and metabolic outputs in a highly plastic manner. Neuronal diversity is key to enabling hypothalamic functions and, according to the neuroscience dogma, it is predetermined during embryonic life. Here, by combining lineage tracing of hypothalamic pro-opiomelanocortin (Pomc) neurons with single-cell profiling approaches in adult male mice, we uncovered subpopulations of 'Ghost' neurons endowed with atypical molecular and functional identity. Compared to 'classical' Pomc neurons, Ghost neurons exhibit negligible Pomc expression and are 'invisible' to available neuroanatomical approaches and promoter-based reporter mice for studying Pomc biology. Ghost neuron numbers augment in diet-induced obese mice, independent of neurogenesis or cell death, but weight loss can reverse this shift. Our work challenges the notion of fixed, developmentally programmed neuronal identities in the mature hypothalamus and highlight the ability of specialised neurons to reversibly adapt their functional identity to adult-onset obesogenic stimuli.


Asunto(s)
Hipotálamo , Neuronas , Obesidad , Proopiomelanocortina , Análisis de la Célula Individual , Animales , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Neuronas/metabolismo , Obesidad/metabolismo , Obesidad/patología , Masculino , Ratones , Hipotálamo/metabolismo , Hipotálamo/citología , Modelos Animales de Enfermedad , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Ratones Obesos
7.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514794

RESUMEN

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastornos de la Memoria , Ubiquitina-Proteína Ligasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mutación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo
8.
Curr Biol ; 33(22): 5011-5022.e6, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37879332

RESUMEN

Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs.


Asunto(s)
Cannabinoides , Estimulantes del Sistema Nervioso Central , Anfetamina/farmacología , Anfetamina/metabolismo , Receptores de Cannabinoides/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/metabolismo , Neuronas/metabolismo , Cuerpo Estriado/fisiología , Endocannabinoides/farmacología , Cannabinoides/farmacología
9.
Cells ; 12(15)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566006

RESUMEN

Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratones , Ratones Noqueados , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ansiedad/tratamiento farmacológico
10.
Cell Chem Biol ; 30(8): 920-932.e7, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37572668

RESUMEN

The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited ß-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Animales , Humanos , Ratones , Receptor de Melatonina MT1/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Mitocondrias/metabolismo , Respiración
11.
J Neurochem ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37515372

RESUMEN

The brain requires large quantities of energy to sustain its functions. At the same time, the brain is isolated from the rest of the body, forcing this organ to develop strategies to control and fulfill its own energy needs. Likely based on these constraints, several brain-specific mechanisms emerged during evolution. For example, metabolically specialized cells are present in the brain, where intercellular metabolic cycles are organized to separate workload and optimize the use of energy. To orchestrate these strategies across time and space, several signaling pathways control the metabolism of brain cells. One of such controlling systems is the endocannabinoid system, whose main signaling hub in the brain is the type-1 cannabinoid (CB1 ) receptor. CB1 receptors govern a plethora of different processes in the brain, including cognitive function, emotional responses, or feeding behaviors. Classically, the mechanisms of action of CB1 receptors on brain function had been explained by its direct targeting of neuronal synaptic function. However, new discoveries have challenged this view. In this review, we will present and discuss recent data about how a small fraction of CB1 receptors associated to mitochondrial membranes (mtCB1 ), are able to exert a powerful control on brain functions and behavior. mtCB1 receptors impair mitochondrial functions both in neurons and astrocytes. In the latter cells, this effect is linked to an impairment of astrocyte glycolytic function, resulting in specific behavioral outputs. Finally, we will discuss the potential implications of (mt)CB1 expression on oligodendrocytes and microglia metabolic functions, with the aim to encourage interdisciplinary approaches to better understand the role of (mt)CB1 receptors in brain function and behavior.

12.
Nat Med ; 29(6): 1487-1499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291212

RESUMEN

Cannabis use disorder (CUD) is widespread, and there is no pharmacotherapy to facilitate its treatment. AEF0117, the first of a new pharmacological class, is a signaling-specific inhibitor of the cannabinoid receptor 1 (CB1-SSi). AEF0117 selectively inhibits a subset of intracellular effects resulting from Δ9-tetrahydrocannabinol (THC) binding without modifying behavior per se. In mice and non-human primates, AEF0117 decreased cannabinoid self-administration and THC-related behavioral impairment without producing significant adverse effects. In single-ascending-dose (0.2 mg, 0.6 mg, 2 mg and 6 mg; n = 40) and multiple-ascending-dose (0.6 mg, 2 mg and 6 mg; n = 24) phase 1 trials, healthy volunteers were randomized to ascending-dose cohorts (n = 8 per cohort; 6:2 AEF0117 to placebo randomization). In both studies, AEF0117 was safe and well tolerated (primary outcome measurements). In a double-blind, placebo-controlled, crossover phase 2a trial, volunteers with CUD were randomized to two ascending-dose cohorts (0.06 mg, n = 14; 1 mg, n = 15). AEF0117 significantly reduced cannabis' positive subjective effects (primary outcome measurement, assessed by visual analog scales) by 19% (0.06 mg) and 38% (1 mg) compared to placebo (P < 0.04). AEF0117 (1 mg) also reduced cannabis self-administration (P < 0.05). In volunteers with CUD, AEF0117 was well tolerated and did not precipitate cannabis withdrawal. These data suggest that AEF0117 is a safe and potentially efficacious treatment for CUD.ClinicalTrials.gov identifiers: NCT03325595 , NCT03443895 and NCT03717272 .


Asunto(s)
Cannabis , Alucinógenos , Abuso de Marihuana , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Método Doble Ciego , Dronabinol/efectos adversos , Alucinógenos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
13.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298644

RESUMEN

The medical use of cannabis has a very long history. Although many substances called cannabinoids are present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) are the three main cannabinoids that are most present and described. CBD itself is not responsible for the psychotropic effects of cannabis, since it does not produce the typical behavioral effects associated with the consumption of this drug. CBD has recently gained growing attention in modern society and seems to be increasingly explored in dentistry. Several subjective findings suggest some therapeutic effects of CBD that are strongly supported by research evidence. However, there is a plethora of data regarding CBD's mechanism of action and therapeutic potential, which are in many cases contradictory. We will first provide an overview of the scientific evidence on the molecular mechanism of CBD's action. Furthermore, we will map the recent developments regarding the possible oral benefits of CBD. In summary, we will highlight CBD's promising biological features for its application in dentistry, despite exiting patents that suggest the current compositions for oral care as the main interest of the industry.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Dronabinol , Salud Bucal , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinol , Odontología
14.
Nat Commun ; 14(1): 2303, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085487

RESUMEN

The type-1 cannabinoid receptor (CB1R) is widely expressed in excitatory and inhibitory nerve terminals, and by suppressing neurotransmitter release, its activation modulates neural circuits and brain function. While the interaction of CB1R with various intracellular proteins is thought to alter receptor signaling, the identity and role of these proteins are poorly understood. Using a high-throughput proteomic analysis complemented with an array of in vitro and in vivo approaches in the mouse brain, we report that the C-terminal, intracellular domain of CB1R interacts specifically with growth-associated protein of 43 kDa (GAP43). The CB1R-GAP43 interaction occurs selectively at mossy cell axon boutons, which establish excitatory synapses with dentate granule cells in the hippocampus. This interaction impairs CB1R-mediated suppression of mossy cell to granule cell transmission, thereby inhibiting cannabinoid-mediated anti-convulsant activity in mice. Thus, GAP43 acts as a synapse type-specific regulatory partner of CB1R that hampers CB1R-mediated effects on hippocampal circuit function.


Asunto(s)
Cannabinoides , Ratones , Animales , Cannabinoides/farmacología , Cannabinoides/metabolismo , Proteómica , Hipocampo/metabolismo , Transmisión Sináptica , Sinapsis/metabolismo , Receptores de Cannabinoides/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
15.
Neuron ; 111(12): 1887-1897.e6, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37098353

RESUMEN

Corticosteroid-mediated stress responses require the activation of complex brain circuits involving mitochondrial activity, but the underlying cellular and molecular mechanisms are scantly known. The endocannabinoid system is implicated in stress coping, and it can directly regulate brain mitochondrial functions via type 1 cannabinoid (CB1) receptors associated with mitochondrial membranes (mtCB1). In this study, we show that the impairing effect of corticosterone in the novel object recognition (NOR) task in mice requires mtCB1 receptors and the regulation of mitochondrial calcium levels in neurons. Different brain circuits are modulated by this mechanism to mediate the impact of corticosterone during specific phases of the task. Thus, whereas corticosterone recruits mtCB1 receptors in noradrenergic neurons to impair NOR consolidation, mtCB1 receptors in local hippocampal GABAergic interneurons are required to inhibit NOR retrieval. These data reveal unforeseen mechanisms mediating the effects of corticosteroids during different phases of NOR, involving mitochondrial calcium alterations in different brain circuits.


Asunto(s)
Neuronas Adrenérgicas , Corticosterona , Ratones , Animales , Corticosterona/farmacología , Receptores de Cannabinoides , Calcio , Mitocondrias , Endocannabinoides , Receptor Cannabinoide CB1 , Hipocampo/fisiología
16.
Biomedicines ; 12(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38255167

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission are generally known to be produced by respiratory droplets and aerosols from the oral cavity (O.C.) of infected subjects, as stated by the World Health Organization. Saliva also retains the viral particles and aids in the spread of COVID-19. Angiotensin-converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are two of the numerous factors that promote SARS-CoV-2 infection, expressed by O.C. structures, various mucosa types, and the epithelia of salivary glands. A systemic SARS-CoV-2 infection might result from viral replication in O.C. cells. On the other hand, cellular damage of different subtypes in the O.C. might be associated with various clinical signs and symptoms. Factors interfering with SARS-CoV-2 infection potential might represent fertile ground for possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the O.C., finally representing a way to reduce COVID-19 incidence and severity.

17.
Cells ; 11(16)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36010658

RESUMEN

Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.


Asunto(s)
Adipocitos Blancos , Cannabinoides , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Cannabinoides/metabolismo , Cannabinoides/farmacología , Mitocondrias/metabolismo
18.
Cell Metab ; 34(2): 187-188, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108507

RESUMEN

Cognitive dysfunction is often diagnosed in people with obesity and associated metabolic disorders. In the latest issue of Cell Metabolism, Ramírez et al. highlight an impaired production of the neurosteroid pregnenolone in the hypothalamus as a mechanism for obesity-induced cognitive impairment in both rodent models and patients with obesity.


Asunto(s)
Hipotálamo , Pregnenolona , Humanos , Obesidad/complicaciones
19.
Eur J Neurosci ; 55(4): 903-908, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35118747

RESUMEN

The endocannabinoid system is widely expressed both in the brain and in the periphery. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands, and the enzymes involved in their metabolic processes. In the last few years, the development of new imaging and molecular tools has demonstrated that these receptors are distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular or molecular effects are differentially mediated by cannabinoid receptors according to their specific localization in different cell-types or in different subcellular locations. Moreover, the endocannabinoid system is also expressed throughout the body where it can serve to modulate the connection between the brain and the periphery. Finally, better understanding of the cannabinoid receptors structure and pharmacology has led researchers to propose interesting and new allosteric modulators of synaptic communication. The latest advances and innovative research in the cannabinoid field will provide new insights and better approaches to improve its interesting potential therapeutic profile. This special issue intends to bring together a series of empirical papers, targeted reviews and opinions from leaders in the field that will highlight the new advances in cannabinoid research.


Asunto(s)
Cannabinoides , Endocannabinoides , Receptores de Cannabinoides , Encéfalo/metabolismo , Moduladores de Receptores de Cannabinoides/farmacología , Moduladores de Receptores de Cannabinoides/fisiología , Cannabinoides/metabolismo , Cannabinoides/farmacología , Endocannabinoides/metabolismo , Receptores de Cannabinoides/metabolismo , Transducción de Señal
20.
Cell Rep ; 37(2): 109800, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644574

RESUMEN

Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.


Asunto(s)
Regulación del Apetito , Conducta Alimentaria , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibición Neural , Núcleo Hipotalámico Paraventricular/metabolismo , Proopiomelanocortina/metabolismo , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proopiomelanocortina/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA