Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain Pathol ; 27(4): 459-471, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27488538

RESUMEN

Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter mice and electron microscopy, we demonstrate axonal discontinuities, bead-like spheroids and ovoids in pmn suralis nerves indicating prominent sensory neuropathy. The axonal alterations qualitatively resemble those in phrenic motor nerves but do not culminate in the loss of myelinated fibers. We further show that the pmn mutation decreases the level of TBCE, impedes microtubule polymerization in dorsal root ganglion (DRG) neurons and causes progressive loss of microtubules in large and small caliber suralis axons. Live imaging of axonal transport using GFP-tagged tetanus toxin C-fragment (GFP-TTC) demonstrates defects in microtubule-based transport in pmn DRG neurons, providing a potential explanation for the axonal alterations in sensory nerves. This study unravels sensory neuropathy as a pathological feature of mouse pmn, and discusses the potential contribution of cytoskeletal defects to sensory neuropathy in human motor neuron disease.


Asunto(s)
Transporte Axonal/genética , Microtúbulos/metabolismo , Enfermedad de la Neurona Motora/complicaciones , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/patología , Nervio Sural/patología , Animales , Axones/metabolismo , Axones/patología , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Ganglios Espinales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Ratones Transgénicos , Microtúbulos/genética , Microtúbulos/ultraestructura , Chaperonas Moleculares/genética , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Mutación Missense/genética , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Nervio Frénico/patología , Nervio Frénico/ultraestructura , Polimerizacion , Nervio Sural/metabolismo , Nervio Sural/ultraestructura
2.
Mol Neurodegener ; 11(1): 43, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27277231

RESUMEN

BACKGROUND: Pathological Golgi fragmentation represents a constant pre-clinical feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) but its molecular mechanisms remain hitherto unclear. RESULTS: Here, we show that the severe Golgi fragmentation in transgenic mutant SOD1(G85R) and SOD1(G93A) mouse motor neurons is associated with defective polymerization of Golgi-derived microtubules, loss of the COPI coat subunit ß-COP, cytoplasmic dispersion of the Golgi tether GM130, strong accumulation of the ER-Golgi v-SNAREs GS15 and GS28 as well as tubular/vesicular Golgi fragmentation. Data mining, transcriptomic and protein analyses demonstrate that both SOD1 mutants cause early presymptomatic and rapidly progressive up-regulation of the microtubule-destabilizing proteins Stathmins 1 and 2. Remarkably, mutant SOD1-triggered Golgi fragmentation and Golgi SNARE accumulation are recapitulated by Stathmin 1/2 overexpression but completely rescued by Stathmin 1/2 knockdown or the microtubule-stabilizing drug Taxol. CONCLUSIONS: We conclude that Stathmin-triggered microtubule destabilization mediates Golgi fragmentation in mutant SOD1-linked ALS and potentially also in related motor neuron diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Aparato de Golgi/patología , Microtúbulos/patología , Neuronas Motoras/patología , Estatmina/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Neuronas Motoras/metabolismo , Superóxido Dismutasa-1/genética
3.
Neurobiol Dis ; 82: 269-280, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26107889

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease. Human motor neurons generated from induced pluripotent stem cells (iPSc) offer new perspectives for disease modeling and drug testing in ALS. In standard iPSc-derived cultures, however, the two major phenotypic alterations of ALS--degeneration of motor neuron cell bodies and axons--are often obscured by cell body clustering, extensive axon criss-crossing and presence of unwanted cell types. Here, we succeeded in isolating 100% pure and standardized human motor neurons by a novel FACS double selection based on a p75(NTR) surface epitope and an HB9::RFP lentivirus reporter. The p75(NTR)/HB9::RFP motor neurons survive and grow well without forming clusters or entangled axons, are electrically excitable, contain ALS-relevant motor neuron subtypes and form functional connections with co-cultured myotubes. Importantly, they undergo rapid and massive cell death and axon degeneration in response to mutant SOD1 astrocytes. These data demonstrate the potential of FACS-isolated human iPSc-derived motor neurons for improved disease modeling and drug testing in ALS and related motor neuron diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Citometría de Flujo/métodos , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Adulto , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Astrocitos/patología , Astrocitos/fisiología , Axones/patología , Axones/fisiología , Supervivencia Celular , Células Cultivadas , Niño , Técnicas de Cocultivo , Genes Reporteros , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Lentivirus , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Mutación , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
4.
Hum Mol Genet ; 23(22): 5961-75, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951541

RESUMEN

Golgi fragmentation is an early hallmark of many neurodegenerative diseases but its pathophysiological relevance and molecular mechanisms are unclear. We here demonstrate severe and progressive Golgi fragmentation in motor neurons of progressive motor neuronopathy (pmn) mice due to loss of the Golgi-localized tubulin-binding cofactor E (TBCE). Loss of TBCE in mutant pmn and TBCE-depleted motor neuron cultures causes defects in Golgi-derived microtubules, as expected, but surprisingly also reduced levels of COPI subunits, decreased recruitment of tethering factors p115/GM130 and impaired Golgi SNARE-mediated vesicle fusion. Conversely, ARF1, which stimulates COPI vesicle formation, enhances the recruitment of TBCE to the Golgi, increases polymerization of Golgi-derived microtubules and rescues TBCE-linked Golgi fragmentation. These data indicate an ARF1/TBCE-mediated cross-talk that coordinates COPI formation and tubulin polymerization at the Golgi. We conclude that interruption of this cross-talk causes Golgi fragmentation in pmn mice and hypothesize that similar mechanisms operate in human amyotrophic lateral sclerosis and spinal muscular atrophy.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Aparato de Golgi/metabolismo , Chaperonas Moleculares/metabolismo , Atrofia Muscular Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Proteína Coat de Complejo I/metabolismo , Modelos Animales de Enfermedad , Aparato de Golgi/química , Humanos , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética , Neuronas Motoras/química , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Polimerizacion , Transducción de Señal , Tubulina (Proteína)/química
5.
Eur J Neurosci ; 36(4): 2400-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22642323

RESUMEN

Postnatal formation of the neuromuscular synapse requires complex interactions among nerve terminal, muscle fibres and terminal Schwann cells. In motor endplate disease (med) mice, neuromuscular transmission is severely impaired without alteration of axonal conduction and a lethal paralytic phenotype occurs during the postnatal period. The med phenotype appears at a crucial stage of the neuromuscular junction development, corresponding to the increase in terminal Schwann cell number, the elimination of the multiple innervations and the pre- and postsynaptic maturation. Here we investigated the early cellular and molecular consequences of the med mutation on neuromuscular junction development. We observed that cellular defects preceded overt clinical phenotype. The first detectable cellular effect of the mutation at the onset of the clinical phenotype was a drastic reduction in the number of terminal Schwann cells, in part due to an increase in glial apoptosis, and a delayed maturation of motor endplates. We also showed that, in terminally ill animals, mono-innervation was not achieved, synaptic vesicles had accumulated in the presynaptic compartment and, finally, the size of motor endplates was reduced. All together, our findings suggested that the clinical weakness in these mutant mice was likely to be related to postnatal structural abnormalities of the neuromuscular junction maturation.


Asunto(s)
Enfermedades de la Unión Neuromuscular/patología , Unión Neuromuscular/crecimiento & desarrollo , Animales , Apoptosis , Ratones , Fibras Musculares Esqueléticas/patología , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Terminales Presinápticos/patología , Células de Schwann/patología , Vesículas Sinápticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA