Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(29): 38711-38722, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38995218

RESUMEN

Two-dimensional (2D) van der Waals heterostructures combine the distinct properties of individual 2D materials, resulting in metamaterials, ideal for emergent electronic, optoelectronic, and spintronic phenomena. A significant challenge in harnessing these properties for future hybrid circuits is their large-scale realization and integration into graphene interconnects. In this work, we demonstrate the direct growth of molybdenum disulfide (MoS2) crystals on patterned graphene channels. By enhancing control over vapor transport through a confined space chemical vapor deposition growth technique, we achieve the preferential deposition of monolayer MoS2 crystals on monolayer graphene. Atomic resolution scanning transmission electron microscopy reveals the high structural integrity of the heterostructures. Through in-depth spectroscopic characterization, we unveil charge transfer in Graphene/MoS2, with MoS2 introducing p-type doping to graphene, as confirmed by our electrical measurements. Photoconductivity characterization shows that photoactive regions can be locally created in graphene channels covered by MoS2 layers. Time-resolved ultrafast transient absorption (TA) spectroscopy reveals accelerated charge decay kinetics in Graphene/MoS2 heterostructures compared to standalone MoS2 and upconversion for below band gap excitation conditions. Our proof-of-concept results pave the way for the direct growth of van der Waals heterostructure circuits with significant implications for ultrafast photoactive nanoelectronics and optospintronic applications.

2.
Nanoscale Horiz ; 9(3): 456-464, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38214968

RESUMEN

Achieving enhanced and stable electrical quality of scalable graphene is crucial for practical graphene device applications. Accordingly, encapsulation has emerged as an approach for improving electrical transport in graphene. In this study, we demonstrate high-current treatment of graphene passivated by AlOx nanofilms as a new means to enhance the electrical quality of graphene for its scalable utilization. Our experiments and electrical measurements on large-scale chemical vapor-deposited (CVD) graphene devices reveal that high-current treatment causes persistent and irreversible de-trapping density in both bare graphene and graphene covered by AlOx. Strikingly, despite possible interfacial defects in graphene covered with AlOx, the high-current treatment enhances its carrier mobility by up to 200% in contrast to bare graphene samples, where mobility decreases. Spatially resolved Raman spectroscopy mapping confirms that surface passivation by AlOx, followed by the current treatment, reduces the number of sp3 defects in graphene. These results suggest that for current treated-passivated graphene (CTPG), the high-current treatment considerably reduces charged impurity and trapped charge densities, thereby reducing Coulomb scattering while mitigating any electromigration of carbon atoms. Our study unveils CTPG as an innovative system for practical utilization in graphene nanoelectronic and spintronic integrated circuits.

3.
ACS Appl Mater Interfaces ; 14(31): 36209-36216, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867345

RESUMEN

Adherence of metal oxides to graphene is of fundamental significance to graphene nanoelectronic and spintronic interfaces. Titanium oxide and aluminum oxide are two widely used tunnel barriers in such devices, which offer optimum interface resistance and distinct interface conditions that govern transport parameters and device performance. Here, we reveal a fundamental difference in how these metal oxides interface with graphene through electrical transport measurements and Raman and photoelectron spectroscopies, combined with ab initio electronic structure calculations of such interfaces. While both oxide layers cause surface charge transfer induced p-type doping in graphene, in sharp contrast to TiOx, the AlOx/graphene interface shows the presence of appreciable sp3 defects. Electronic structure calculations disclose that significant p-type doping occurs due to a combination of sp3 bonds formed between C and O atoms at the interface and possible slightly off-stoichiometric defects of the aluminum oxide layer. Furthermore, the sp3 hybridization at the AlOx/graphene interface leads to distinct magnetic moments of unsaturated bonds, which not only explicates the widely observed low spin-lifetimes in AlOx barrier graphene spintronic devices but also suggests possibilities for new hybrid resistive switching and spin valves.

4.
Nanoscale Adv ; 3(19): 5656-5662, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36133267

RESUMEN

Emergent technologies are required in the field of nanoelectronics for improved contacts and interconnects at nano and micro-scale. In this work, we report a highly-efficient nanolithography process for the growth of cobalt nanostructures requiring an ultra-low charge dose (15 µC cm-2, unprecedented in single-step charge-based nanopatterning). This resist-free process consists in the condensation of a ∼28 nm-thick Co2(CO)8 layer on a substrate held at -100 °C, its irradiation with a Ga+ focused ion beam, and substrate heating up to room temperature. The resulting cobalt-based deposits exhibit sub-100 nm lateral resolution, display metallic behaviour (room-temperature resistivity of 200 µΩ cm), present ferromagnetic properties (magnetization at room temperature of 400 emu cm-3) and can be grown in large areas. To put these results in perspective, similar properties can be achieved by room-temperature focused ion beam induced deposition and the same precursor only if a 2 × 103 times higher charge dose is used. We demonstrate the application of such an ultra-fast growth process to directly create electrical contacts onto graphene ribbons, opening the route for a broad application of this technology to any 2D material. In addition, the application of these cryo-deposits for hard masking is demonstrated, confirming its structural functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA