Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochimie ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222904

RESUMEN

Among nearly a hundred known bioluminescent systems, only about a dozen have been studied to some extent, and the structures of only a few luciferins have been established. Moreover, the biosynthesis pathway is known only for two of them - the fungal and bacterial ones. Marine polychaetes of the Odontosyllis genus possess bright bioluminescence. The structures of its bioluminescence system key components were recently elucidated, and a possible pathway of the luciferin biosynthesis was proposed. Here we report the transaminase enzyme from Odontosyllis undecimdonta, the first potential participant of the cascade. We demonstrate that the discovered ferment catalyzes the transamination of the cys2DOPA, one of the potential luciferin biosynthetic precursors. The results of the experiments support the hypothesis that the discovered enzyme might be the part of the Odontosyllis luciferin biosynthesis pathway.

2.
J Nat Prod ; 87(7): 1852-1859, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38961616

RESUMEN

Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel implicated in skin physiology and itch. TRPV3 inhibitors can present a novel strategy for combating debilitating itch conditions, and medicinal plants are a natural pool of such compounds. Here, we report the isolation of a TRPV3-inhibiting compound from Andrographis paniculata, a medicinal plant with anti-inflammatory properties whose bioactive components are poorly characterized in terms of molecular targets. Using 1H and 13C NMR and high-resolution mass spectrometry, the compound was identified as a labdane-type diterpenoid, 14-deoxy-11,12-didehydroandrographolide (ddA). The activity of the compound was evaluated by fluorescent calcium assay and manual whole-cell patch-clamp technique. ddA inhibited human TRPV3 in stably expressing CHO and HaCaT keratinocytes, acting selectively among other TRP channels implicated in itch and inflammation and not showing toxicity to HaCaT cells. Antipruritic effects of the compound were evaluated in scratching behavior models on ICR mice. ddA suppressed itch induced by the TRPV3 activator carvacrol. Additionally, ddA potently suppressed histamine-induced itch with efficacy comparable to loratadine, a clinically used antihistamine drug. These results suggest the potential of ddA as a possible safe and efficacious alternative for antipruritic therapy.


Asunto(s)
Andrographis , Diterpenos , Plantas Medicinales , Prurito , Canales Catiónicos TRPV , Animales , Diterpenos/farmacología , Diterpenos/química , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Prurito/tratamiento farmacológico , Humanos , Ratones , Plantas Medicinales/química , Andrographis/química , Estructura Molecular , Ratones Endogámicos ICR , Queratinocitos/efectos de los fármacos , Células CHO , Cricetulus , Antipruriginosos/farmacología , Masculino , Piel/efectos de los fármacos , Células HaCaT
3.
Biochem Biophys Res Commun ; 708: 149787, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38537527

RESUMEN

We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org. Biomol. Chem. 21:415-427). In the present communication we compared in vitro BL spectra in the absence and in the presence of the cofactor and found a wavelength shift from 420 to 476 nm. This violet-blue BRET to deazaflavin cofactor (acceptor of photonless transfer) masks the actual oxyluciferin as an emitter (BRET donor) in the novel BL system. The best candidate for that masked chromophore is tryptophan 2-carboxylate (T2C) found previously as a building block in some natural products isolated from Henlea sp. (Dubinnyi et al., 2020, ChemSelect 5:13155-13159). We synthesized T2C and acetyl-T2C, verified their presence in earthworms by nanoflow-HRMS, explored spectral properties of excitation and emission spectra and found a chain of excitation/emission maxima with a perfect potential for BRET: 300 nm (excitation of T2C) - 420 nm (emission of T2C) - 420 nm (excitation of deazaflavin) - 476 nm (emission of deazaflavin, BL). An array of natural products with T2C chromophore are present in BL earthworms as candidates for novel oxyluciferin. We demonstrated for the Henlea BL that the energy of the excited state of the T2C chromophore is transferred by the Förster mechanism and then emitted by deazaflavin (BRET), similarly to known examples: aequorin-GFP in Aequorea victoria and antenna proteins in bacterial BL systems (lumazine from Photobacterium and yellow fluorescent protein from Vibrio fischeri strain Y1).


Asunto(s)
Productos Biológicos , Oligoquetos , Animales , Proteínas Luminiscentes/metabolismo , Oligoquetos/metabolismo , Triptófano , Proteínas Bacterianas/metabolismo
4.
Sci Adv ; 10(10): eadk1992, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457503

RESUMEN

The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.


Asunto(s)
Luminiscencia , Plantas , Animales , Mamíferos
5.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685955

RESUMEN

Acid-sensing ion channels (ASICs) are proton-gated ion channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Sevanol was reported previously as a naturally-occurring ASIC inhibitor from thyme with favorable analgesic and anti-inflammatory activity. Using electrophysiological methods, we found that in the high micromolar range, the compound effectively inhibited homomeric ASIC1a and, in sub- and low-micromolar ranges, positively modulated the currents of α1ß2γ2 GABAA receptors. Next, we tested the compound in anxiety-related behavior models using a targeted delivery into the hippocampus with parallel electroencephalographic measurements. In the open field, 6 µM sevanol reduced both locomotor and θ-rhythmic activity similar to GABA, suggesting a primary action on the GABAergic system. At 300 µM, sevanol markedly suppressed passive avoidance behavior, implying alterations in conditioned fear memory. The observed effects could be linked to distinct mechanisms involving GABAAR and ASIC1a. These results elaborate the preclinical profile of sevanol as a candidate for drug development and support the role of ASIC channels in fear-related functions of the hippocampus.


Asunto(s)
Thymus (Planta) , Canales Iónicos Sensibles al Ácido , Miedo/efectos de los fármacos , Ácido gamma-Aminobutírico , Hipocampo/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Thymus (Planta)/química
6.
Org Lett ; 25(26): 4892-4897, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37366567

RESUMEN

We report the first total synthesis of racemic Odontosyllis undecimdonta luciferin, a thieno[3,2-f]thiochromene tricarboxylate comprising a 6-6-5-fused tricyclic skeleton with three sulfur atoms in different electronic states. The key transformation is based on tandem condensation of bifunctional thiol-phosphonate, obtained from dimethyl acetylene dicarboxylate, with benzothiophene-6,7-quinone. The presented convergent approach provides the synthesis of the target compound with a previously unreported fused heterocyclic core in 11 steps, thus allowing for unambiguous confirmation of the chemical structure of Odontosyllis luciferin by 2D-NMR spectroscopy.

7.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298416

RESUMEN

Biochemistry of bioluminescence of the marine parchment tubeworm Chaetopterus has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from Chaetomorpha linum algae, which demonstrate bioluminescence activity with Chaetopterus luciferase in the presence of Fe2+ ions. These compounds are derivatives of polyunsaturated fatty acid peroxides. We have also obtained their structural analogues and demonstrated their activity in the bioluminescence reaction, thus confirming the broad substrate specificity of the luciferase.


Asunto(s)
Peróxidos , Poliquetos , Animales , Luciferasas/química , Mediciones Luminiscentes
8.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674833

RESUMEN

Hispidin is a polyketide found in plants and fungi. In bioluminescent fungi, hispidin serves as a precursor of luciferin and is produced by hispidin synthases. Previous studies revealed that hispidin synthases differ in orthologous polyketide synthases from non-bioluminescent fungi by the absence of two domains with predicted ketoreductase and dehydratase activities. Here, we investigated the hypothesis that the loss of these domains in evolution led to the production of hispidin and the emergence of bioluminescence. We cloned three orthologous polyketide synthases from non-bioluminescent fungi, as well as their truncated variants, and assessed their ability to produce hispidin in a bioluminescence assay in yeast. Interestingly, expression of the full-length enzyme hsPKS resulted in dim luminescence, indicating that small amounts of hispidin are likely being produced as side products of the main reaction. Deletion of the ketoreductase and dehydratase domains resulted in no luminescence. Thus, domain truncation by itself does not appear to be a sufficient step for the emergence of efficient hispidin synthases from orthologous polyketide synthases. At the same time, the production of small amounts of hispidin or related compounds by full-length enzymes suggests that ancestral fungal species were well-positioned for the evolution of bioluminescence.


Asunto(s)
Sintasas Poliquetidas , Pironas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Hongos/genética , Hongos/metabolismo , Hidroliasas/metabolismo
9.
Insects ; 13(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421945

RESUMEN

There are several well-studied examples of protective symbiosis between insect host and symbiotic actinobacteria, producing antimicrobial metabolites to inhibit host pathogens. These mutualistic relationships are best described for some wasps and leaf-cutting ants, while a huge variety of insect species still remain poorly explored. For the first time, we isolated actinobacteria from the harvester ant Messor structor and evaluated the isolates' potential as antimicrobial producers. All isolates could be divided into two morphotypes of single and mycelial cells. We found that the most common mycelial morphotype was observed among soldiers and least common among larvae in the studied laboratory colony. The representative of this morphotype was identified as Streptomyces globisporus subsp. globisporus 4-3 by a polyphasic approach. It was established using a E. coli JW5503 pDualRep2 system that crude broths of mycelial isolates inhibited protein synthesis in reporter strains, but it did not disrupt the in vitro synthesis of proteins in cell-free extracts. An active compound was extracted, purified and identified as albomycin δ2. The pronounced ability of albomycin to inhibit the growth of entomopathogens suggests that Streptomyces globisporus subsp. globisporus may be involved in defensive symbiosis with the Messor structor ant against infections.

10.
Org Lett ; 24(27): 4892-4895, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35770905

RESUMEN

The bacterium Streptomyces sp. KMM 9044 from a sample of marine sediment collected in the northwestern part of the Sea of Japan produces highly chlorinated depsiheptapeptides streptocinnamides A (1) and B (2), representatives of a new structural group of antibiotics. The structures of 1 and 2 were determined using nuclear magnetic resonance and mass spectrometry studies and confirmed by a series of chemical transformations. Streptocinnamide A potently inhibits Micrococcus sp. KMM 1467, Arthrobacter sp. ATCC 21022, and Mycobacterium smegmatis MC2 155.


Asunto(s)
Depsipéptidos , Streptomyces , Antibacterianos/farmacología , Depsipéptidos/química , Sedimentos Geológicos/microbiología , Japón , Filogenia , Streptomyces/química
11.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682715

RESUMEN

Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.


Asunto(s)
Lignanos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Lignanos/química , Lignanos/farmacología , Estrés Oxidativo
12.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163108

RESUMEN

The biodiversity of microorganisms is maintained by intricate nets of interactions between competing species. Impaired functionality of human microbiomes correlates with their reduced biodiversity originating from aseptic environmental conditions and antibiotic use. Microbiomes of wild animals are free of these selective pressures. Microbiota provides a protecting shield from invasion by pathogens in the wild, outcompeting their growth in specific ecological niches. We applied ultrahigh-throughput microfluidic technologies for functional profiling of microbiomes of wild animals, including the skin beetle, Siberian lynx, common raccoon dog, and East Siberian brown bear. Single-cell screening of the most efficient killers of the common human pathogen Staphylococcus aureus resulted in repeated isolation of Bacillus pumilus strains. While isolated strains had different phenotypes, all of them displayed a similar set of biosynthetic gene clusters (BGCs) encoding antibiotic amicoumacin, siderophore bacillibactin, and putative analogs of antimicrobials including bacilysin, surfactin, desferrioxamine, and class IId cyclical bacteriocin. Amicoumacin A (Ami) was identified as a major antibacterial metabolite of these strains mediating their antagonistic activity. Genome mining indicates that Ami BGCs with this architecture subdivide into three distinct families, characteristic of the B. pumilus, B. subtilis, and Paenibacillus species. While Ami itself displays mediocre activity against the majority of Gram-negative bacteria, isolated B. pumilus strains efficiently inhibit the growth of both Gram-positive S. aureus and Gram-negative E. coli in coculture. We believe that the expanded antagonistic activity spectrum of Ami-producing B. pumilus can be attributed to the metabolomic profile predetermined by their biosynthetic fingerprint. Ultrahigh-throughput isolation of natural probiotic strains from wild animal microbiomes, as well as their metabolic reprogramming, opens up a new avenue for pathogen control and microbiome remodeling in the food industry, agriculture, and healthcare.


Asunto(s)
Animales Salvajes/microbiología , Antibacterianos/administración & dosificación , Bacillus pumilus/química , Escherichia coli/crecimiento & desarrollo , Microbiota , Probióticos/administración & dosificación , Staphylococcus aureus/crecimiento & desarrollo , Animales , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Genoma Bacteriano , Metaboloma , Familia de Multigenes , Probióticos/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos
13.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680742

RESUMEN

Gram-negative pathogens represent an urgent threat due to their intrinsic and acquired antibiotic resistance. Many recent drug candidates display prominent antimicrobial activity against Gram-positive bacteria being inefficient against Gram-negative pathogens. Ultrahigh-throughput, microfluidics-based screening techniques represent a new paradigm for deep profiling of antibacterial activity and antibiotic discovery. A key stage of this technology is based on single-cell cocultivation of microbiome biodiversity together with reporter fluorescent pathogen in emulsion, followed by the selection of reporter-free droplets using fluorescence-activated cell sorting. Here, a panel of reporter strains of Gram-negative bacteria Escherichia coli was developed to provide live biosensors for precise monitoring of antimicrobial activity. We optimized cell morphology, fluorescent protein, and selected the most efficient promoters for stable, homogeneous, high-level production of green fluorescent protein (GFP) in E. coli. Two alternative strategies based on highly efficient constitutive promoter pJ23119 or T7 promoter leakage enabled sensitive fluorescent detection of bacterial growth and killing. The developed live biosensors were applied for isolating potent E. coli-killing Paenibacillus polymyxa P4 strain by the ultrahigh-throughput screening of soil microbiome. The multi-omics approach revealed antibiotic colistin (polymyxin E) and its biosynthetic gene cluster, mediating antibiotic activity. Live biosensors may be efficiently implemented for antibiotic/probiotic discovery, environmental monitoring, and synthetic biology.

14.
Pharmaceuticals (Basel) ; 13(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722325

RESUMEN

Among acid-sensing ion channels (ASICs), ASIC1a and ASIC3 subunits are the most widespread and prevalent in physiological and pathophysiological conditions. They participate in synaptic plasticity, learning and memory, as well as the perception of inflammatory and neurological pain, making these channels attractive pharmacological targets. Sevanol, a natural lignan isolated from Thymus armeniacus, inhibits the activity of ASIC1a and ASIC3 isoforms, and has a significant analgesic and anti-inflammatory effect. In this work, we described the efficient chemical synthesis scheme of sevanol and its analogues, which allows us to analyze the structure-activity relationships of the different parts of this molecule. We found that the inhibitory activity of sevanol and its analogues on ASIC1a and ASIC3 channels depends on the number and availability of the carboxyl groups of the molecule. At the structural level, we predicted the presence of a sevanol binding site based on the presence of molecular docking in the central vestibule of the ASIC1a channel. We predicted that this site could also be occupied in part by the FRRF-amide peptide, and the competition assay of sevanol with this peptide confirmed this prediction. The intravenous (i.v.), intranasal (i.n.) and, especially, oral (p.o.) administration of synthetic sevanol in animal models produced significant analgesic and anti-inflammatory effects. Both non-invasive methods of sevanol administration (i.n. and p.o.) showed greater efficacy than the invasive (i.v.) method, thus opening new horizons for medicinal uses of sevanol.

15.
J Org Chem ; 84(23): 15417-15428, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31702147

RESUMEN

An efficient and high-yielding strategy to prepare "unsymmetrical" 4-aryl-isoxazol-3,5-dicarboxylic acid derivatives from nitroacetic esters and aromatic aldehydes has been developed. The strategy is based on the isolation and usage of the previously missed intermediate of the Dornow reaction-5-hydroxy-6-oxo-4-aryl-6H-1,2-oxazine-3-carboxylates. In addition, the mechanism of the Dornow reaction was partially revised.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA