Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Eur J Endocrinol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798200

RESUMEN

BACKGROUND: Most pituitary adenomas, also termed pituitary neuroendocrine tumors (PitNETs), are benign in nature and can be treated effectively by surgical resection, medical treatment and in special cases by radiotherapy. However, invasive growth can be an important feature of a more aggressive behavior and adverse prognosis. Extension of pituitary adenomas into the cavernous sinus can be categorized according to the Knosp criteria on magnetic resonance imaging (MRI). Comparative analyses of MRI features and intraoperative findings of invasive growth regarding different clinical factors are still scarce. MATERIALS AND METHODS: We performed a retrospective single-center analysis of 764 pituitary adenomas that were surgically treated between October 2004 and April 2018. Invasive growth was assessed according to the surgical reports and preoperative MR imaging (Knosp criteria). Clinical data such as patient age at diagnosis and gender, histopathological adenoma type as well as extent of resection were collected. RESULTS: Invasive features on MRI were seen in 24.4% (Knosp grade 3A - 4, 186/764) of cases. Intraoperatively, invasion was present in 42.4% (324/764). Complete resection was achieved in 80.0% of adenomas and subtotal resection in 20.1%. By multivariate analysis, invasion according to intraoperative findings was associated with the sparsely granulated corticotroph (SGCA, p=0.0026) and sparsely granulated somatotroph (SGSA, p=0.0103) adenoma type as well as age (p=0.0287). Radiographic invasion according to Knosp grades 3A-4 correlated with age (p=0.0098), SGCAs (p=0.0005), SGSAs (p=0.0351) and gonadotroph adenomas (p=0.0478).Both criteria of invasion correlated with subtotal resection (p=0.0001, respectively). CONCLUSION: Both intraoperative and radiographic signs of invasive growth are high-risk lesions for incomplete extent of resection and occur more frequently in older patients. A particularly high prevalence of invasion can be found in the sparsely granulated corticotroph and somatotroph adenoma types. Cavernous sinus invasion is also more common in gonadotroph adenomas. Usage of the Knosp classification is a valuable preoperative estimation tool.

2.
Cancers (Basel) ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791871

RESUMEN

The 2021 WHO classification of CNS tumors is a challenge for neuroradiologists due to the central role of the molecular profile of tumors. The potential of novel data analysis tools in neuroimaging must be harnessed to maintain its role in predicting tumor subgroups. We performed a scoping review to determine current evidence and research gaps. A comprehensive literature search was conducted regarding glioma subgroups according to the 2021 WHO classification and the use of MRI, radiomics, machine learning, and deep learning algorithms. Sixty-two original articles were included and analyzed by extracting data on the study design and results. Only 8% of the studies included pediatric patients. Low-grade gliomas and diffuse midline gliomas were represented in one-third of the research papers. Public datasets were utilized in 22% of the studies. Conventional imaging sequences prevailed; data on functional MRI (DWI, PWI, CEST, etc.) are underrepresented. Multiparametric MRI yielded the best prediction results. IDH mutation and 1p/19q codeletion status prediction remain in focus with limited data on other molecular subgroups. Reported AUC values range from 0.6 to 0.98. Studies designed to assess generalizability are scarce. Performance is worse for smaller subgroups (e.g., 1p/19q codeleted or IDH1/2 mutated gliomas). More high-quality study designs with diversity in the analyzed population and techniques are needed.

3.
Neurooncol Adv ; 6(1): vdae053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680987

RESUMEN

Background: Little is known about the growth dynamics of untreated glioblastoma and its possible influence on postoperative survival. Our aim was to analyze a possible association of preoperative growth dynamics with postoperative survival. Methods: We performed a retrospective analysis of all adult patients surgically treated for newly diagnosed glioblastoma at our center between 2010 and 2020. By volumetric analysis of data of patients with availability of ≥3 preoperative sequential MRI, a growth pattern was aimed to be identified. Main inclusion criterion for further analysis was the availability of two preoperative MRI scans with a slice thickness of 1 mm, at least 7 days apart. Individual growth rates were calculated. Association with overall survival (OS) was examined by multivariable. Results: Out of 749 patients screened, 13 had ≥3 preoperative MRI, 70 had 2 MRI and met the inclusion criteria. A curve estimation regression model showed the best fit for exponential tumor growth. Median tumor volume doubling time (VDT) was 31 days, median specific growth rate (SGR) was 2.2% growth per day. SGR showed negative correlation with tumor size (rho = -0.59, P < .001). Growth rates were dichotomized according to the median SGR.OS was significantly longer in the group with slow growth (log-rank: P = .010). Slower preoperative growth was independently associated with longer overall survival in a multivariable Cox regression model for patients after tumor resection. Conclusions: Especially small lesions suggestive of glioblastoma showed exponential tumor growth with variable growth rates and a median VDT of 31 days. SGR was significantly associated with OS in patients with tumor resection in our sample.

4.
Neurosurgery ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687044

RESUMEN

BACKGROUND AND OBJECTIVES: The underlying pathophysiological cause of moyamoya angiopathy (MMA) is still unclear. High-resolution vessel wall imaging has become a useful tool. The aim was to study vessel wall contrast-enhancement (VW-CE) as an imaging marker to predict disease progression in MMA. METHODS: Patients with MMA, who had undergone serial contrast-enhanced high-resolution MRI with concomitant and follow-up digital subtraction angiography, were analyzed retrospectively. VW-CE was semiquantified by measurement of the signal intensity of the vessel wall in in contrast-enhanced high-resolution MRI. A comparative quotient with the contrast-intensity of the pituitary stalk was calculated and graded accordingly from grade 1 to 5. VW-CE status was correlated with disease status, stroke, cerebrovascular reactivity in CO2-triggered blood-oxygen level-dependent MRI, angiographic disease progression, revascularization surgery, and follow-up imaging. RESULTS: Forty eight patients met the inclusion criteria. N = 56 MRI and digital subtraction angiography time-intervals were evaluated for 12 vessel sections per hemisphere each (N = 1344). N = 38 (79%) patients showed VW-CE and N = 10 (21%) did not. VW-CE was only observed in the terminal internal carotid artery and the proximal circle of Willis (N = 96/1344). Notably, patients with VW-CE significantly more often presented with acute infarction in the concomitant MRI. The incidence of angiographically proven disease progression was significantly associated with the incidence of VW-CE, and time to disease progression was earlier in higher grades of VW-CE compared with lower grades. CONCLUSION: VW-CE is a semiquantifiable marker for disease activity in patients with MMA and associated with disease progression and increased risk of stroke. VW-CE analysis can be routinely performed in patients with MMA to estimate the risk for disease progression and stroke.

5.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496668

RESUMEN

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

6.
Neurol Res Pract ; 6(1): 15, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38449051

RESUMEN

INTRODUCTION: In Multiple Sclerosis (MS), patients´ characteristics and (bio)markers that reliably predict the individual disease prognosis at disease onset are lacking. Cohort studies allow a close follow-up of MS histories and a thorough phenotyping of patients. Therefore, a multicenter cohort study was initiated to implement a wide spectrum of data and (bio)markers in newly diagnosed patients. METHODS: ProVal-MS (Prospective study to validate a multidimensional decision score that predicts treatment outcome at 24 months in untreated patients with clinically isolated syndrome or early Relapsing-Remitting-MS) is a prospective cohort study in patients with clinically isolated syndrome (CIS) or Relapsing-Remitting (RR)-MS (McDonald 2017 criteria), diagnosed within the last two years, conducted at five academic centers in Southern Germany. The collection of clinical, laboratory, imaging, and paraclinical data as well as biosamples is harmonized across centers. The primary goal is to validate (discrimination and calibration) the previously published DIFUTURE MS-Treatment Decision score (MS-TDS). The score supports clinical decision-making regarding the options of early (within 6 months after study baseline) platform medication (Interferon beta, glatiramer acetate, dimethyl/diroximel fumarate, teriflunomide), or no immediate treatment (> 6 months after baseline) of patients with early RR-MS and CIS by predicting the probability of new or enlarging lesions in cerebral magnetic resonance images (MRIs) between 6 and 24 months. Further objectives are refining the MS-TDS score and providing data to identify new markers reflecting disease course and severity. The project also provides a technical evaluation of the ProVal-MS cohort within the IT-infrastructure of the DIFUTURE consortium (Data Integration for Future Medicine) and assesses the efficacy of the data sharing techniques developed. PERSPECTIVE: Clinical cohorts provide the infrastructure to discover and to validate relevant disease-specific findings. A successful validation of the MS-TDS will add a new clinical decision tool to the armamentarium of practicing MS neurologists from which newly diagnosed MS patients may take advantage. Trial registration ProVal-MS has been registered in the German Clinical Trials Register, `Deutsches Register Klinischer Studien` (DRKS)-ID: DRKS00014034, date of registration: 21 December 2018; https://drks.de/search/en/trial/DRKS00014034.

7.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411286

RESUMEN

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Síndromes Epilépticos , Adulto , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Fenitoína , Estudios Transversales , Síndromes Epilépticos/complicaciones , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Convulsiones/complicaciones , Imagen por Resonancia Magnética/métodos , Atrofia/patología
8.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405699

RESUMEN

Background: GAA- FGF14 ataxia (SCA27B) is a recently reported late-onset ataxia caused by a GAA repeat expansion in intron 1 of the FGF14 gene. Initial studies revealed cerebellar atrophy in 74-97% of patients. A more detailed brain imaging characterization of GAA- FGF14 ataxia is now needed to provide supportive diagnostic features and earlier disease recognition. Methods: We performed a retrospective review of the brain MRIs of 35 patients (median age at MRI 63 years; range 28-88 years) from Quebec (n=27), Nancy (n=3), Perth (n=3) and Bengaluru (n=2) to assess the presence of atrophy in vermis, cerebellar hemispheres, brainstem, cerebral hemispheres, and corpus callosum, as well as white matter involvement. Following the identification of the superior cerebellar peduncles (SCPs) involvement, we verified its presence in 54 GAA- FGF14 ataxia patients from four independent cohorts (Tübingen n=29; Donostia n=12; Innsbruck n=7; Cantabria n=6). To assess lobular atrophy, we performed quantitative cerebellar segmentation in 5 affected subjects with available 3D T1-weighted images and matched controls. Results: Cerebellar atrophy was documented in 33 subjects (94.3%). We observed SCP involvement in 22 subjects (62.8%) and confirmed this finding in 30/54 (55.6%) subjects from the validation cohorts. Cerebellar segmentation showed reduced mean volumes of lobules X and IV in the 5 affected individuals. Conclusions: Cerebellar atrophy is a key feature of GAA- FGF14 ataxia. The frequent SCP involvement observed in different cohorts may facilitate the diagnosis. The predominant involvement of lobule X correlates with the frequently observed downbeat nystagmus.

9.
PLoS One ; 19(2): e0296843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330027

RESUMEN

In drug-resistant focal epilepsy, detecting epileptogenic lesions using MRI poses a critical diagnostic challenge. Here, we assessed the utility of MP2RAGE-a T1-weighted sequence with self-bias correcting properties commonly utilized in ultra-high field MRI-for the detection of epileptogenic lesions using a surface-based morphometry pipeline based on FreeSurfer, and compared it to the common approach using T1w MPRAGE, both at 3T. We included data from 32 patients with focal epilepsy (5 MRI-positive, 27 MRI-negative with lobar seizure onset hypotheses) and 94 healthy controls from two epilepsy centres. Surface-based morphological measures and intensities were extracted and evaluated in univariate GLM analyses as well as multivariate unsupervised 'novelty detection' machine learning procedures. The resulting prediction maps were analyzed over a range of possible thresholds using alternative free-response receiver operating characteristic (AFROC) methodology with respect to the concordance with predefined lesion labels or hypotheses on epileptogenic zone location. We found that MP2RAGE performs at least comparable to MPRAGE and that especially analysis of MP2RAGE image intensities may provide additional diagnostic information. Secondly, we demonstrate that unsupervised novelty-detection machine learning approaches may be useful for the detection of epileptogenic lesions (maximum AFROC AUC 0.58) when there is only a limited lesional training set available. Third, we propose a statistical method of assessing lesion localization performance in MRI-negative patients with lobar hypotheses of the epileptogenic zone based on simulation of a random guessing process as null hypothesis. Based on our findings, it appears worthwhile to study similar surface-based morphometry approaches in ultra-high field MRI (≥ 7 T).


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Humanos , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Epilepsias Parciales/diagnóstico por imagen , Epilepsia Refractaria/diagnóstico por imagen
10.
Artículo en Inglés | MEDLINE | ID: mdl-38383154

RESUMEN

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.

11.
Brain ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386308

RESUMEN

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1,500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations, however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESC), including a knock-out and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and Western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR), and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-Seq analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry, and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.

12.
Ann Clin Transl Neurol ; 11(3): 806-811, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38186185

RESUMEN

Differential diagnosis between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) using cerebrospinal fluid (CSF) biomarkers is challenging. A recent study suggested that the addition of Aß38 and Aß43 to a standard AD biomarker panel (Aß40, Aß42, t-tau, p-tau) to improve the differential diagnosis. We tested this hypothesis in an independent German cohort of CAA and AD patients and controls using the same analytical techniques. We found excellent discrimination between AD and controls and between CAA and controls, but not between AD and CAA. Adding Aß38 and Aß43 to the panel did not improve the discrimination between AD and CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/diagnóstico , Biomarcadores/líquido cefalorraquídeo
13.
Brain Imaging Behav ; 18(1): 66-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855956

RESUMEN

Structural and functional changes in cortical and subcortical regions have been reported in behavioral variant frontotemporal dementia (bvFTD), however, a multimodal approach may provide deeper insights into the neural correlates of neuropsychiatric symptoms. In this multicenter study, we measured cortical thickness (CTh) and subcortical volumes to identify structural abnormalities in 37 bvFTD patients, and 37 age- and sex-matched healthy controls. For seed regions with significant structural changes, whole-brain functional connectivity (FC) was examined in a sub-cohort of N = 22 bvFTD and N = 22 matched control subjects to detect complementary alterations in brain network organization. To explore the functional significance of the observed structural and functional deviations, correlations with clinical and neuropsychological outcomes were tested where available. Significantly decreased CTh was observed in the bvFTD group in caudal middle frontal gyrus, left pars opercularis, bilateral superior frontal and bilateral middle temporal gyrus along with subcortical volume reductions in bilateral basal ganglia, thalamus, hippocampus, and amygdala. Resting-state functional magnetic resonance imaging showed decreased FC in bvFTD between: dorsal striatum and left caudal middle frontal gyrus; putamen and fronto-parietal regions; pallidum and cerebellum. Conversely, bvFTD showed increased FC between: left middle temporal gyrus and paracingulate gyrus; caudate nucleus and insula; amygdala and parahippocampal gyrus. Additionally, cortical thickness in caudal, lateral and superior frontal regions as well as caudate nucleus volume correlated negatively with apathy severity scores of the Neuropsychiatry Inventory Questionnaire. In conclusion, multimodal structural and functional imaging indicates that fronto-striatal regions have a considerable influence on the severity of apathy in bvFTD.


Asunto(s)
Apatía , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/patología , Imagen por Resonancia Magnética/métodos , Encéfalo , Sustancia Gris/patología
14.
Int J Stroke ; 19(1): 120-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37515459

RESUMEN

RATIONALE: Oxygen is essential for cellular energy metabolism. Neurons are particularly vulnerable to hypoxia. Increasing oxygen supply shortly after stroke onset could preserve the ischemic penumbra until revascularization occurs. AIMS: PROOF investigates the use of normobaric oxygen (NBO) therapy within 6 h of symptom onset/notice for brain-protective bridging until endovascular revascularization of acute intracranial anterior-circulation occlusion. METHODS AND DESIGN: Randomized (1:1), standard treatment-controlled, open-label, blinded endpoint, multicenter adaptive phase IIb trial. STUDY OUTCOMES: Primary outcome is ischemic core growth (mL) from baseline to 24 h (intention-to-treat analysis). Secondary efficacy outcomes include change in NIHSS from baseline to 24 h, mRS at 90 days, cognitive and emotional function, and quality of life. Safety outcomes include mortality, intracranial hemorrhage, and respiratory failure. Exploratory analyses of imaging and blood biomarkers will be conducted. SAMPLE SIZE: Using an adaptive design with interim analysis at 80 patients per arm, up to 456 participants (228 per arm) would be needed for 80% power (one-sided alpha 0.05) to detect a mean reduction of ischemic core growth by 6.68 mL, assuming 21.4 mL standard deviation. DISCUSSION: By enrolling endovascular thrombectomy candidates in an early time window, the trial replicates insights from preclinical studies in which NBO showed beneficial effects, namely early initiation of near 100% inspired oxygen during short temporary ischemia. Primary outcome assessment at 24 h on follow-up imaging reduces variability due to withdrawal of care and early clinical confounders such as delayed extubation and aspiration pneumonia. TRIAL REGISTRATIONS: ClinicalTrials.gov: NCT03500939; EudraCT: 2017-001355-31.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Humanos , Isquemia Encefálica/complicaciones , Procedimientos Endovasculares/métodos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/diagnóstico , Estudios Multicéntricos como Asunto , Oxígeno/uso terapéutico , Calidad de Vida , Trombectomía/métodos , Resultado del Tratamiento , Ensayos Clínicos Fase II como Asunto
17.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961570

RESUMEN

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA