Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Traffic Inj Prev ; 24(sup1): S47-S54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267007

RESUMEN

Objective: One potential nonstandard seating configuration for vehicles with automated driving systems (ADS) is a reclined seat that is rear-facing when in a frontal collision. There are limited biomechanical response and injury data for this seating configuration during high-speed collisions. The main objective of this study was to investigate thoracic biomechanical responses and injuries to male postmortem human subjects (PMHS) in a rear-facing scenario with varying boundary conditions.Method: Fourteen rear-facing male PMHS tests (10 previously published and 4 newly tested) were conducted at two different recline angles (25-degree and 45-degree) in 56 km/h frontal impacts. PMHS were seated in two different seats; one used a Fixed D-Ring (FDR) seat belt assembly and one used an All Belts To Seat (ABTS) restraint. For thoracic instrumentation, strain gages were attached to ribs to quantify strain and fracture timing. A chestband was installed at the mid-sternum level to quantify anterior-posterior (AP) chest deflections. Data from the thorax instrumentation were analyzed to investigate injury mechanisms.Results: The PMHS sustained a greater number of rib fractures (NRF) in the 45-degree recline condition (12 ± 7 NRF for ABTS45 and 25 ± 18 NRF for FDR45) than the 25-degree condition (6 ± 4 NRF for ABTS25 and 12 ± 8 NRF for FDR25), despite AP chest compressions in the 45-degree condition (-23.7 ± 9.4 mm for ABTS45 and -39.6 ± 11.9 mm for FDR45) being smaller than the 25-degree condition (-38.9 ± 16.9 mm for ABTS25 and -55.0 ± 4.4 mm for FDR25). The rib fractures from the ABTS condition were not as symmetric as the FDR condition in the 25-degree recline angle due to a belt retractor structure located at one side of the seatback frame. Average peak AP chest compression occurred at 45.7 ± 3.4 ms for ABTS45, 45.6 ± 3.1 ms for FDR45, 46.7 ± 1.9 ms for ABTS25, and 46.9 ± 2.3 ms for FDR25. Average peak seatback resultant force occurred at 43.9 ± 0.9 ms for ABTS45, 44.6 ± 0.8 ms for FDR45, 42.5 ± 0.2 ms for ABTS25, and 41.5 ± 0.5 ms for FDR25. The majority of rib fractures occurred after peak AP chest compression and peak seatback resultant force likely due to the ramping motion of the PMHS, which might create a combined loading (e.g., AP deflection and upward deflection) to the thorax. Although NRF in the 45-degree reclined condition was greater than the 25-degree recline condition, similar magnitudes of rib strains were observed regardless of seat and restraint types, while strain modes varied.Conclusions: The majority of rib fractures occurred after peak AP chest compression and peak seatback force, especially in FDR25, ABTS45, and FDR45, while the PMHS ramped up along the seatback. AP chest compression, seatback load, and strain measured along the rib could not explain the greater NRF in the 45-degree recline conditions. A complex combination of AP chest deflection with upward deflection was discovered as a possible mechanism for rib fractures in PMHS subjected to rear-facing frontal impacts in this study.


Asunto(s)
Fracturas de las Costillas , Traumatismos Torácicos , Humanos , Masculino , Fracturas de las Costillas/etiología , Accidentes de Tránsito , Traumatismos Torácicos/etiología , Cadáver , Fenómenos Biomecánicos
2.
Traffic Inj Prev ; 24(1): 62-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36576054

RESUMEN

OBJECTIVE: The purpose of this study was to generate biomechanical response corridors of the small female thorax during a frontal hub impact and evaluate scaled corridors that have been used to assess biofidelity of small female anthropomorphic test devices (ATDs) and human body models (HBMs). METHODS: Three small female postmortem human subjects (PMHS) were tested under identical conditions, in which the thorax was impacted using a 14.0 kg pneumatic impactor at an impact velocity of 4.3 m/s. Impact forces to PMHS thoraces were measured using a load cell installed behind a circular impactor face with a 15.2 cm diameter. Thoracic deflections were quantified using a chestband positioned at mid-sternum. Strain gages installed on the ribs and sternum identified fracture timing. Biomechanical response corridors (force-deflection) were generated and compared to scaled small female thoracic corridors using a traditional scaling method (TSM) and rib response-based scaling method (RRSM). A BioRank System Score (BRSS) was used to quantify differences between the small female PMHS data and both scaled corridors. RESULTS: Coefficients of variation from the three small female PMHS responses were less than 2% for peak force and 7% for peak deflection. Overall, the scaled corridor means determined from the TSM and RRSM were less than two standard deviations away from the mean small female PMHS corridors (BRSS < 2.0). The RRSM resulted in smaller deviation (BRSS = 1.1) from the PMHS corridors than the TSM (BRSS = 1.7), suggesting the RRSM is an appropriate scaling method. CONCLUSIONS: New small female PMHS force-deflection data are provided in this study. Scaled corridors from the TSM, which have been used to optimize current safety tools, were comparable to the small female PMHS corridors. The RRSM, which has the great benefit of using rib structural properties instead of requiring whole PMHS data, resulted in better agreement with the small female PMHS data than the TSM and deserves further investigation to identify scaling factors for other population demographics.


Asunto(s)
Accidentes de Tránsito , Fracturas de las Costillas , Humanos , Femenino , Cadáver , Fenómenos Biomecánicos/fisiología , Tórax/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA