Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 851-854, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018118

RESUMEN

Air Traffic Control (ATC) has been classified as the fourth most stressful job. In this regard, sixteen controllers were asked to perform ecological ATC simulation during which behavioral (Radio Communications with pilots - RCs), subjective (stress perception) and neurophysiological signals (brain activity and skin conductance - SC) were collected. All the considered parameters reported significant changes under high stress conditions. In particular, the theta, alpha, and beta brain rhythms increased significantly (all p<0.05) all over the brain areas, and both the SC components exhibited higher values (p<0.01). Additionally, the number of speech under high stress decreased significantly (p<10-4) while both the mean and median value of the F0 component of the RC increased (p<0.01). The results can be employed to objectively measure and track the controller's stress level while dealing with ATC activities to better tailoring the workshift and maintaining high safety levels.


Asunto(s)
Aviación , Neurofisiología , Ritmo beta , Encéfalo , Humanos , Habla
2.
Sci Rep ; 10(1): 8600, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451424

RESUMEN

Stress is a word used to describe human reactions to emotionally, cognitively and physically challenging experiences. A hallmark of the stress response is the activation of the autonomic nervous system, resulting in the "fight-freeze-flight" response to a threat from a dangerous situation. Consequently, the capability to objectively assess and track a controller's stress level while dealing with air traffic control (ATC) activities would make it possible to better tailor the work shift and maintain high safety levels, as well as to preserve the operator's health. In this regard, sixteen controllers were asked to perform a realistic air traffic management (ATM) simulation during which subjective data (i.e. stress perception) and neurophysiological data (i.e. brain activity, heart rate, and galvanic skin response) were collected with the aim of accurately characterising the controller's stress level experienced in the various experimental conditions. In addition, external supervisors regularly evaluated the controllers in terms of manifested stress, safety, and efficiency throughout the ATM scenario. The results demonstrated 1) how the stressful events caused both supervisors and controllers to underestimate the experienced stress level, 2) the advantage of taking into account both cognitive and hormonal processes in order to define a reliable stress index, and 3) the importance of the points in time at which stress is measured owing to the potential transient effect once the stressful events have ceased.

3.
Sci Rep ; 7(1): 547, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28373684

RESUMEN

Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic settings.


Asunto(s)
Aviación , Control de la Conducta , Encéfalo/fisiología , Cognición , Electroencefalografía , Ocupaciones , Análisis y Desempeño de Tareas , Análisis de Varianza , Nivel de Alerta , Humanos , Conocimiento , Aprendizaje Automático , Solución de Problemas
4.
IEEE Rev Biomed Eng ; 10: 250-263, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28422665

RESUMEN

This paper provides a focused and organized review of the research progress on neurophysiological indicators, also called "neurometrics," to show how they can effectively address some of the most important human factors (HFs) needs in the air traffic management (ATM) field. In order to better understand and highlight available opportunities of such neuroscientific applications, state of the art on the most involved HFs and related cognitive processes (e.g., mental workload and cognitive training) are presented together with examples of possible applications in current and future ATM scenarios. Furthermore, this paper will discuss the potential enhancements that further research and development activities could bring to the efficiency and safety of the ATM service.


Asunto(s)
Aviación , Neurofisiología , Electroencefalografía , Humanos , Carga de Trabajo
5.
Front Hum Neurosci ; 10: 539, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833542

RESUMEN

Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under- and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (École Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA