Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 286(49): 42470-42482, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22027841

RESUMEN

During repair of multiple chromosomal double strand breaks (DSBs), matching the correct DSB ends is essential to limit rearrangements. To investigate the maintenance of correct end use, we examined repair of two tandem noncohesive DSBs generated by endonuclease I-SceI and the 3' nonprocessive exonuclease Trex2, which can be expressed as an I-SceI-Trex2 fusion. We examined end joining (EJ) repair that maintains correct ends (proximal-EJ) versus using incorrect ends (distal-EJ), which provides a relative measure of incorrect end use (distal end use). Previous studies showed that ATM is important to limit distal end use. Here we show that DNA-PKcs kinase activity and RAD50 are also important to limit distal end use, but that H2AX is dispensable. In contrast, we find that ATM, DNA-PKcs, and RAD50 have distinct effects on repair events requiring end processing. Furthermore, we developed reporters to examine the effects of the transcription context on DSB repair, using an inducible promoter. We find that a DSB downstream from an active promoter shows a higher frequency of distal end use, and a greater reliance on ATM for limiting incorrect end use. Conversely, DSB transcription context does not affect end processing during EJ, the frequency of homology-directed repair, or the role of RAD50 and DNA-PKcs in limiting distal end use. We suggest that RAD50, DNA-PKcs kinase activity, and transcription context are each important to limit incorrect end use during EJ repair of multiple DSBs, but that these factors and conditions have distinct roles during repair events requiring end processing.


Asunto(s)
Cromosomas/genética , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/química , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/química , ADN/química , Transcripción Genética , Ácido Anhídrido Hidrolasas , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Humanos , Ratones , Modelos Genéticos , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
2.
PLoS Genet ; 6(11): e1001194, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21079684

RESUMEN

Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI-resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Rotura Cromosómica , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Genes Reporteros , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Eliminación de Secuencia/genética
3.
PLoS Genet ; 5(10): e1000683, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19834534

RESUMEN

To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3' exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3' overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2.


Asunto(s)
Rotura Cromosómica , Roturas del ADN de Doble Cadena , Mutagénesis , Animales , Células Cultivadas , Reparación del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Ratones , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Methods Cell Biol ; 92: 11-30, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20409796

RESUMEN

We describe the protocol through which we identify and characterize dynein subunit genes in the ciliated protozoan Tetrahymena thermophila. The gene(s) of interest is found by searching the Tetrahymena genome, and it is characterized in silico including the prediction of the open reading frame and identification of likely introns. The gene is then characterized experimentally, including the confirmation of the exon-intron organization of the gene and the measurement of the expression of the gene in nondeciliated and reciliating cells. In order to understand the function of the gene product, the gene is modified-for example, deleted, overexpressed, or epitope-tagged-using the straightforward gene replacement strategies available with Tetrahymena. The effect(s) of the dynein gene modification is evaluated by examining transformants for ciliary traits including cell motility, ciliogenesis, cell division, and the engulfment of particles through the oral apparatus. The multistepped protocol enables undergraduate students to engage in short- and long-term experiments. In our laboratory during the last 6 years, more than two dozen undergraduate students have used these methods to investigate dynein subunit genes.


Asunto(s)
Biología Computacional/métodos , Dineínas/genética , Genes Protozoarios/genética , Tetrahymena/genética , Animales , Bioensayo , Cilios/metabolismo , Dineínas/metabolismo , Regulación de la Expresión Génica , Marcación de Gen , Fenotipo , Filogenia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Análisis de Secuencia de ADN
5.
PLoS Genet ; 4(6): e1000110, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18584027

RESUMEN

Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB) repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ), single-strand annealing (SSA), and homology directed repair (HDR/GC). Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.


Asunto(s)
Rotura Cromosómica , Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Endodesoxirribonucleasas , Endonucleasas/genética , Endonucleasas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Autoantígeno Ku , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA