Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2314763121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557194

RESUMEN

Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Pérdida Auditiva Sensorineural , Cobayas , Animales , Audición , Cóclea , Ruido/efectos adversos , Células Ciliadas Auditivas Externas/fisiología , Umbral Auditivo
2.
Mol Neurobiol ; 57(7): 3171-3182, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32504419

RESUMEN

Disrupted neuronal plasticity due to subtle inflammation is considered to play a fundamental role in the pathogenesis of major depressive disorder. Interferon-α (IFN-α) potentiates immune responses against viral pathogens that induce toll-like receptor-3 (TLR3) activation but evokes severe major depressive disorder in humans by mechanisms that remain insufficiently described. By using a previously established mouse model of depression induced by combined delivery of IFN-α and polyinosinic:polycytidylic acid (poly(I:C)), a TLR3 agonist, we provide evidence that IFN-α and poly(I:C) reduce apical dendritic spine density in the hippocampal CA1 area ex vivo via mechanisms involving decreased TrkB signaling. In vitro, IFN-α and poly(I:C) treatments required neuronal activity to reduce dendritic spine density and TrkB signaling. The levels of presynaptic protein vesicular glutamate transporter (VGLUT)-1 and postsynaptic protein postsynaptic density-95 (PSD95) were specifically decreased, whereas the expression of both synaptic and extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 1 (AMPAR1) was increased by IFN-α and poly(I:C) delivery. Patch clamp recordings in primary hippocampal neurons revealed that morphological changes at the synapse induced by IFN-α and poly(I:C) costimulation were accompanied by an increased action potential threshold and action potential frequency, indicative of impaired neuronal excitability. Taken together, IFN-α and poly(I:C) delivery leads to structural and functional alterations at the synapse indicating that compromised neuroplasticity may play an integral role in the pathogenesis of immune response-induced depression.


Asunto(s)
Depresión/fisiopatología , Hipocampo/fisiopatología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Depresión/inducido químicamente , Depresión/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Interferón-alfa , Ratones , Poli I-C , Transducción de Señal/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
3.
EMBO Rep ; 21(6): e47954, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32323475

RESUMEN

Cleavage of amyloid precursor protein (APP) by BACE-1 (ß-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-ß (Aß) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and Aß production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis. Now, we find that AP-2 prevents amyloidogenesis by additionally functioning downstream of BACE1 endocytosis, regulating BACE1 endosomal trafficking and its delivery to lysosomes. AP-2 is decreased in iPSC-derived neurons from patients with late-onset AD, while conditional AP-2 knockout (KO) mice exhibit increased Aß production, resulting from accumulation of BACE1 within late endosomes and autophagosomes. Deletion of BACE1 decreases amyloidogenesis and mitigates synapse loss in neurons lacking AP-2. Taken together, these data suggest a mechanism for BACE1 intracellular trafficking and degradation via an endocytosis-independent function of AP-2 and reveal a novel role for endocytic proteins in AD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Humanos , Ratones , Neuronas
4.
Nat Commun ; 8: 14819, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387218

RESUMEN

Autophagosomes primarily mediate turnover of cytoplasmic proteins or organelles to provide nutrients and eliminate damaged proteins. In neurons, autophagosomes form in distal axons and are trafficked retrogradely to fuse with lysosomes in the soma. Although defective neuronal autophagy is associated with neurodegeneration, the function of neuronal autophagosomes remains incompletely understood. We show that in neurons, autophagosomes promote neuronal complexity and prevent neurodegeneration in vivo via retrograde transport of brain-derived neurotrophic factor (BDNF)-activated TrkB receptors. p150Glued/dynactin-dependent transport of TrkB-containing autophagosomes requires their association with the endocytic adaptor AP-2, an essential protein complex previously thought to function exclusively in clathrin-mediated endocytosis. These data highlight a novel non-canonical function of AP-2 in retrograde transport of BDNF/TrkB-containing autophagosomes in neurons and reveal a causative link between autophagy and BDNF/TrkB signalling.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Encéfalo/patología , Receptor trkB/metabolismo , Animales , Autofagosomas , Autofagia , Transporte Biológico , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Complejo Dinactina/metabolismo , Endocitosis , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Unión Proteica , Ratas Wistar , Transducción de Señal
5.
Anal Biochem ; 502: 50-52, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26973219

RESUMEN

There is still an unmet need for simple methods to verify, visualize, and confirm protein-protein interactions in vivo. Here we describe a plasmid-based system to study such interactions. The system is based on the transmembrane domain (TMD) of the EF-hand Ca(2+) sensor protein calneuron-2. We show that fusion of 28 amino acids that include the TMD of calneuron-2 to proteins of interest results in prominent localization on the cytoplasmic side of the Golgi. The recruitment of binding partners to the protein of interest fused to this sequence can then be easily visualized by fluorescent tags.


Asunto(s)
Proteínas de Unión al Calcio/química , Motivos EF Hand , Aparato de Golgi/metabolismo , Plásmidos/genética , Mapeo de Interacción de Proteínas/métodos , Animales , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Fluorescencia , Humanos , Unión Proteica , Dominios Proteicos
6.
Cell Rep ; 14(2): 189-99, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26748700

RESUMEN

The local synthesis of transmembrane proteins underlies functional specialization of dendritic microdomains in neuronal plasticity. It is unclear whether these proteins have access to the complete machinery of the secretory pathway following local synthesis. In this study, we describe a probe called pGolt that allows visualization of Golgi-related organelles for live imaging in neurons. We show that pGolt labels a widespread microsecretory Golgi satellite (GS) system that is, in contrast to Golgi outposts, present throughout basal and apical dendrites of all pyramidal neurons. The GS system contains glycosylation machinery and is localized between ERGIC and retromer. Synaptic activity restrains lateral movement of ERGIC, GS, and retromer close to one another, allowing confined processing of secretory cargo. Several synaptic transmembrane proteins pass through and recycle back to the GS system. Thus, the presence of an ER-ERGIC-GS-retromer microsecretory system in all neuronal dendrites enables autonomous local control of transmembrane protein synthesis and processing.


Asunto(s)
Dendritas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Glicosilación , Neuronas
7.
J Vis Exp ; (90): e51310, 2014 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-25145907

RESUMEN

Studying activity dependent protein expression, subcellular translocation, or phosphorylation is essential to understand the underlying cellular mechanisms of synaptic plasticity. Long-term potentiation (LTP) and long-term depression (LTD) induced in acute hippocampal slices are widely accepted as cellular models of learning and memory. There are numerous studies that use live cell imaging or immunohistochemistry approaches to visualize activity dependent protein dynamics. However these methods rely on the suitability of antibodies for immunocytochemistry or overexpression of fluorescence-tagged proteins in single neurons. Immunoblotting of proteins is an alternative method providing independent confirmation of the findings. The first limiting factor in preparation of subcellular fractions from individual tetanized hippocampal slices is the low amount of material. Second, the handling procedure is crucial because even very short and minor manipulations of living slices might induce activation of certain signaling cascades. Here we describe an optimized workflow in order to obtain sufficient quantity of nuclear enriched fraction of sufficient purity from the CA1 region of acute hippocampal slices from rat brain. As a representative example we show that the ERK1/2 phosphorylated form of the synapto-nuclear protein messenger Jacob actively translocates to the nucleus upon induction of LTP and can be detected in a nuclear enriched fraction from CA1 neurons.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Región CA1 Hipocampal/fisiología , Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Aprendizaje/fisiología , Potenciación a Largo Plazo , Sistema de Señalización de MAP Quinasas , Memoria/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ratas
9.
Cell ; 152(5): 1119-33, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452857

RESUMEN

The activation of N-methyl-D-aspartate-receptors (NMDARs) in synapses provides plasticity and cell survival signals, whereas NMDARs residing in the neuronal membrane outside synapses trigger neurodegeneration. At present, it is unclear how these opposing signals are transduced to and discriminated by the nucleus. In this study, we demonstrate that Jacob is a protein messenger that encodes the origin of synaptic versus extrasynaptic NMDAR signals and delivers them to the nucleus. Exclusively synaptic, but not extrasynaptic, NMDAR activation induces phosphorylation of Jacob at serine-180 by ERK1/2. Long-distance trafficking of Jacob from synaptic, but not extrasynaptic, sites depends on ERK activity, and association with fragments of the intermediate filament α-internexin hinders dephosphorylation of the Jacob/ERK complex during nuclear transit. In the nucleus, the phosphorylation state of Jacob determines whether it induces cell death or promotes cell survival and enhances synaptic plasticity.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Sistema de Señalización de MAP Quinasas , Ratones , Neuronas/citología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA