Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Biol ; 14: 66, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27506200

RESUMEN

BACKGROUND: Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. RESULTS: We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. CONCLUSIONS: The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.


Asunto(s)
Proteínas de Caenorhabditis elegans/aislamiento & purificación , Caenorhabditis elegans/metabolismo , Guanilato-Quinasas/metabolismo , Especificidad de Órganos , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Biotinilación , Proteínas de Caenorhabditis elegans/metabolismo , Técnica del Anticuerpo Fluorescente , Complejos Multiproteicos/aislamiento & purificación , Neuronas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Reproducibilidad de los Resultados
2.
Mol Biol Cell ; 24(14): 2201-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23699393

RESUMEN

The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.


Asunto(s)
Actinas/genética , Caenorhabditis elegans/genética , Retículo Endoplásmico/genética , Regulación del Desarrollo de la Expresión Génica , Huso Acromático/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Embrión no Mamífero , Retículo Endoplásmico/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/genética , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Meiosis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Unión Proteica , Transducción de Señal , Huso Acromático/metabolismo , Técnicas del Sistema de Dos Híbridos
3.
Nat Cell Biol ; 11(3): 269-77, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19219036

RESUMEN

The spindle apparatus dictates the plane of cell cleavage, which is critical in the choice between symmetric or asymmetric division. Spindle positioning is controlled by an evolutionarily conserved pathway, which involves LIN-5/GPR-1/2/Galpha in Caenorhabditis elegans, Mud/Pins/Galpha in Drosophila and NuMA/LGN/Galpha in humans. GPR-1/2 and Galpha localize LIN-5 to the cell cortex, which engages dynein and controls the cleavage plane during early mitotic divisions in C. elegans. Here we identify ASPM-1 (abnormal spindle-like, microcephaly-associated) as a novel LIN-5 binding partner. ASPM-1, together with calmodulin (CMD-1), promotes meiotic spindle organization and the accumulation of LIN-5 at meiotic and mitotic spindle poles. Spindle rotation during maternal meiosis is independent of GPR-1/2 and Galpha, yet requires LIN-5, ASPM-1, CMD-1 and dynein. Our data support the existence of two distinct LIN-5 complexes that determine localized dynein function: LIN-5/GPR-1/2/Galpha at the cortex, and LIN-5/ASPM-1/CMD-1 at spindle poles. These functional interactions may be conserved in mammals, with implications for primary microcephaly.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Meiosis , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Dineínas Citoplasmáticas , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Mitosis , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA