Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Microbiol ; 14: 1206414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577416

RESUMEN

In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.

3.
Microbiome ; 11(1): 167, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37518067

RESUMEN

BACKGROUND: Legionella are parasites of freshwater protozoa, responsible for Legionellosis. Legionella can be found in a variety of aquatic environments, including rivers, lakes, and springs, as well as in engineered water systems where they can potentially lead to human disease outbarks. Legionella are considered to be predominantly freshwater organisms with a limited ability to proliferate in saline environments. Exposure of Legionella to high sodium concentrations inhibits growth and virulence of laboratory strains, particularly under elevated temperatures. Nonetheless, Legionella have been identified in some saline environments where they likely interact with various protozoan hosts. In this work, we examine how these selection pressures, sodium and grazing, help shape Legionella ecology within natural environments. Utilizing Legionella-specific primers targeting a variable region of the Legionella 16S rRNA gene, we characterized Legionella abundance, diversity, and community composition in natural spring clusters of varying sodium concentrations, focusing on high sodium concentrations and elevated temperatures. RESULTS: We observed the highest abundance of Legionella in spring clusters of high salinity, particularly in combination with elevated temperatures. Legionella abundance was strongly related to sodium concentrations. The Legionella community structure in saline environments was characterized by relatively low diversity, compared to spring clusters of lower salinity. The community composition in high salinity was characterized by few dominant Legionella genotypes, not related to previously described species. Protozoan microbial community structure and composition patterns resembled those of Legionella, suggesting a common response to similar selection pressures. We examined Legionella co-occurrence with potential protozoan hosts and found associations with Ciliophora and Amoebozoa representatives. CONCLUSIONS: Our results indicate that selection forces in saline environments favor a small yet dominant group of Legionella species that are not closely related to known species. These novel environmental genotypes interact with various protozoan hosts, under environmental conditions of high salinity. Our findings suggest that alternative survival mechanisms are utilized by these species, representing mechanisms distinct from those of well-studied laboratory strains. Our study demonstrate how salinity can shape communities of opportunistic pathogens and their hosts, in natural environments, shedding light on evolutionary forces acting within these complex environments. Video Abstract.


Asunto(s)
Legionella , Humanos , Legionella/genética , ARN Ribosómico 16S/genética , Ecología , Microbiología del Agua , Agua Dulce
4.
Mol Psychiatry ; 25(4): 805-820, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30531937

RESUMEN

Mitochondria together with other cellular components maintain a constant crosstalk, modulating transcriptional and posttranslational processes. We and others demonstrated mitochondrial multifaceted dysfunction in schizophrenia, with aberrant complex I (CoI) as a major cause. Here we show deficits in CoI activity and homeostasis in schizophrenia-derived cell lines. Focusing on a core CoI subunit, NDUFV2, one of the most severely affected subunits in schizophrenia, we observed reduced protein level and functioning, with no change in mRNA transcripts. We further show that NDUFV2 pseudogene (NDUFV2P1) expression is increased in schizophrenia-derived cells and in postmortem brain specimens. In schizophrenia and controls pooled samples, NDUFV2P1 level demonstrated a significant inverse correlation with NDUFV2 pre- and matured protein level and with CoI-driven cellular respiration. Our data suggest a role for a pseudogene in its parent-gene regulation and possibly in CoI dysfunction in schizophrenia. The abnormal expression of the pseudogene may be one element of a vicious circle in which CoI deficits lead to mitochondrial dysfunction potentially affecting genome-wide regulation of gene expression, including the expression of pseudogenes.


Asunto(s)
Complejo I de Transporte de Electrón/genética , NADH Deshidrogenasa/genética , Esquizofrenia/genética , Complejo I de Transporte de Electrón/metabolismo , Expresión Génica , Humanos , Mitocondrias/metabolismo , NADH Deshidrogenasa/metabolismo , Seudogenes , ARN Mensajero/metabolismo , Esquizofrenia/metabolismo
5.
Can J Psychiatry ; 61(8): 457-69, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27412728

RESUMEN

Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Fosforilación Oxidativa , Esquizofrenia/metabolismo , Transducción de Señal/fisiología , Humanos
6.
Mar Drugs ; 9(11): 2201-2219, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163182

RESUMEN

Marine sponges are an extremely rich and important source of natural products. Mariculture is one solution to the so-called "supply problem" that often hampers further studies and development of novel compounds from sponges. We report the extended culture (767 days) at sea in depths of 10 and 20 m of three sponge species: Negombata magnifica, Amphimedon chloros and Theonella swinhoei that produce latrunculin-B, halitoxin and swinholide-A, respectively. Since sponge-associated microorganisms may be the true producers of many of the natural products found in sponges and also be linked to the health of the sponges, we examined the stability of the bacterial communities in cultured versus wild sponges. Growth rate of the sponges (ranging from 308 to 61 and -19 (%)(year(-1)) in N. magnifica, A. chloros and T. swinhoei, respectively) differed significantly between species but not between the two depths at which the species were cultivated. Survivorship varied from 96% to 57%. During culture all species maintained the content of the desired natural product. Denaturing gradient gel electrophoresis analysis of the sponge-associated bacterial consortia revealed that differences existed between cultured and wild sponges in T. swinhoei and A. chloros but the communities remained quite stable in N. magnifica. The cultivation technique for production of natural products was found to be most appropriate for N. magnifica, while for T. swinhoei and A. chloros it was less successful, because of poorer growth and survival rates and shifts in their bacterial consortia.


Asunto(s)
Acuicultura/métodos , Productos Biológicos/aislamiento & purificación , Poríferos/crecimiento & desarrollo , Theonella/crecimiento & desarrollo , Animales , Técnicas de Cultivo , Electroforesis en Gel de Gradiente Desnaturalizante , Océanos y Mares , Poríferos/microbiología , Especificidad de la Especie , Theonella/microbiología , Factores de Tiempo
7.
Mar Biotechnol (NY) ; 13(6): 1169-82, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21614563

RESUMEN

Marine organisms including sponges (Porifera) contain many structurally diverse bioactive compounds, frequently in a low concentration that hampers their commercial production. Two solutions to this problem are: culturing sponge explants for harvesting the desired compound and cultivation of sponge-associated bacteria. These bacteria (often considered the source of the desired compounds) include the Actinobacteria, from which many novel drugs were developed. In a long-term experiment (lasting 767 days), we evaluated the culture amenability of the sponge Diacarnus erythraenus in a mariculture system, placed at 10- and 20-m depths. The growth and survival rates of sponge fragments were monitored. Wild and maricultured sponges from both depths and their larvae were sampled at different time intervals for denaturing gradient gel electrophoresis (DGGE) profiling of the bacterial community residing within them. 16S rRNA gene sequences of both cultured bacterial isolates and clone libraries of unculturable bacteria were composed and compared, focusing on Actinobacteria. Sponges from both depths did not differ significantly either in mean growth rates (percent weight change year⁻¹ ± S.E.) (64.5% ± 21% at 10 m and 79.3% ± 19.1% at 20 m) or in seasonal growth rates. Survival was also very similar (72% at 10 m and 70% at 20 m). There were 88 isolates identified from adults and 40 from their larvae. The isolates and clone libraries showed diverse bacterial communities. The DGGE profiles of wild and maricultured sponges differed only slightly, without a significant effect of depths or dates of sampling. This long-term experiment suggests that D. erythraenus probably remained healthy and indicates its mariculture suitability.


Asunto(s)
Actinobacteria/genética , Acuicultura/métodos , Técnicas de Cultivo/métodos , Ecosistema , Filogenia , Poríferos/crecimiento & desarrollo , Poríferos/microbiología , Animales , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional , Electroforesis en Gel de Gradiente Desnaturalizante , Larva/crecimiento & desarrollo , Larva/microbiología , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ADN , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA