Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Nat Metab ; 6(7): 1329-1346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39009762

RESUMEN

Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health.


Asunto(s)
Adipocitos , Metabolismo Energético , Glutaminasa , Ratones Noqueados , Animales , Glutaminasa/metabolismo , Ratones , Humanos , Masculino , Adipocitos/metabolismo , Femenino , Obesidad/metabolismo , Resistencia a la Insulina , Glutamina/metabolismo , Dieta Alta en Grasa , Glucólisis
2.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37651203

RESUMEN

Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs), but growing evidence indicates that transcriptional programs beyond HIFs control tumor angiogenesis. Here, we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering ROS levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following administration of vitamins C and E and N-acetylcysteine in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1-overexpressing cells and decreased in BACH1-knockout cells in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1A-knockout and WT cells. BACH1 was found to be a transcriptional target of HIF1α, but BACH1's ability to stimulate angiogenesis gene expression was HIF1α independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to antiangiogenesis therapy. BACH1 expression in tumor sections from patients with lung cancer correlated with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.


Asunto(s)
Antioxidantes , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Neoplasias Pulmonares , Humanos , Antioxidantes/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Hipoxia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Animales , Ratones
3.
Cell Rep ; 42(8): 112961, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561633

RESUMEN

Refractory and relapsed B cell lymphomas are often driven by the difficult-to-target oncogene MYC. Here, we report that high MYC expression stimulates proliferation and protects B lymphoma cells from apoptosis under normal oxidative stress levels and that compounds including N-acetylcysteine (NAC) and vitamin C (VitC) induce apoptosis by reducing oxidative stress. NAC and VitC injections effectively reduce tumor growth in lymphoma cells with high MYC expression but not in those with low MYC expression. MYC knockdown confers tumor resistance to NAC and VitC, while MYC activation renders B cells sensitive to these compounds. Mechanistically, NAC and VitC stimulate MYC binding to EGR1 through Cys117 of MYC, shifting its transcriptional output from cell cycle to apoptosis gene expression. These results identify a redox-controlled mechanism for MYC's role in maintaining proliferation and preventing apoptosis, offering a potential therapeutic rationale for evaluating NAC or VitC in patients with MYC-driven B cell lymphoma.

4.
Oncogene ; 42(27): 2183-2194, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258742

RESUMEN

The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Genes ras , Microambiente Tumoral/genética
5.
J Am Soc Nephrol ; 34(4): 641-655, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735952

RESUMEN

SIGNIFICANCE STATEMENT: A tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice. In cultured podocytes, the absence of geranylgeranylation resulted in altered activity of its downstream substrates Rac1, RhoA, Cdc42, and Rap1, leading to alterations of ß1-integrins and actin cytoskeleton structural changes. These findings highlight the importance of geranylgeranylation in the dynamic management of RhoGTPases and Rap1 to control podocyte function, providing new knowledge about podocyte biology and glomerular filtration barrier function. BACKGROUND: Impairment of the glomerular filtration barrier is in part attributed to podocyte foot process effacement (FPE), entailing disruption of the actin cytoskeleton and the slit diaphragm. Maintenance of the actin cytoskeleton, which contains a complex signaling network through its connections to slit diaphragm and focal adhesion proteins, is thus considered crucial to preserving podocyte structure and function. A dynamic yet tightly regulated cytoskeleton is attained through balanced activity of RhoGTPases. Most RhoGTPases are post-translationally modified by the enzyme geranylgeranyl transferase type-I (GGTase-I). Although geranylgeranylation has been shown to regulate activities of RhoGTPases and RasGTPase Rap1, its significance in podocytes is unknown. METHODS: We used immunofluorescence to localize GGTase-I, which was expressed mainly by podocytes in the glomeruli. To define geranylgeranylation's role in podocytes, we generated podocyte-specific GGTase-I knockout mice. We used transmission electron microscopy to evaluate FPE and measurements of urinary albumin excretion to analyze filtration barrier function. Geranylgeranylation's effects on RhoGTPases and Rap1 function were studied in vitro by knockdown or inhibition of GGTase-I. We used immunocytochemistry to study structural modifications of the actin cytoskeleton and ß1 integrins. RESULTS: Depletion of GGTase-I in podocytes in vivo resulted in FPE and concomitant early-onset progressive albuminuria. A reduction of GGTase-I activity in cultured podocytes disrupted RhoGTPase balance by markedly increasing activity of RhoA, Rac1, and Cdc42 together with Rap1, resulting in dysregulation of the actin cytoskeleton and altered distribution of ß1 integrins. CONCLUSIONS: These findings indicate that geranylgeranylation is of crucial importance for the maintenance of the delicate equilibrium of RhoGTPases and Rap1 in podocytes and consequently for the maintenance of glomerular integrity and function.


Asunto(s)
Enfermedades Renales , Podocitos , Ratones , Animales , Podocitos/metabolismo , Barrera de Filtración Glomerular , Albuminuria/metabolismo , Enfermedades Renales/metabolismo , Ratones Noqueados , Transferasas/metabolismo , Integrinas/metabolismo
6.
Redox Biol ; 60: 102619, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774779

RESUMEN

Oxidative stress is a barrier of migration and metastasis for malignant melanoma cells. Consequently, reducing oxidative stress with the antioxidant N-acetylcysteine (NAC) stimulates melanoma cell migration in vitro and metastasis in vivo. However, it is not yet known whether the NAC effect is shared with other antioxidants. Here, we screened 104 redox-active compounds and identify 27 that increase migration of human malignant melanoma cells in two doses. Validation experiments in four cell lines and four drug doses resulted in a list of 18 compounds which were ranked based on their ability to increase migration and reduce ROS levels; vitamin C (VitC) ranked as number one, followed by the vitamin E analogue Trolox and several carotenoids and Vitamin A-related compounds. Four diet-relevant compounds from this list-VitC, ß-carotene, retinyl palmitate, and canthaxanthin-were selected and found to accelerate metastasis in mice with BRAFV600E-driven malignant melanoma. Genomics analyses revealed that the transcription factor BACH1 is activated following antioxidant administration and knockout of Bach1 in mouse melanoma cells reduced lymph node and liver metastasis in xenograft mouse models. We conclude that a broad range of antioxidants accelerate melanoma migration and metastasis and that BACH1 is functionally linked to melanoma metastasis in vivo.


Asunto(s)
Antioxidantes , Melanoma , Animales , Humanos , Ratones , Acetilcisteína , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Especies Reactivas de Oxígeno/metabolismo , Vitaminas , Vitamina A/farmacología , Melanoma Cutáneo Maligno
7.
Gut ; 72(2): 275-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35241625

RESUMEN

OBJECTIVE: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.


Asunto(s)
Citoesqueleto , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Células Epiteliales , Inflamación , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/fisiología , Ratones Noqueados , Proteína de Unión al GTP rac1
8.
Basic Clin Pharmacol Toxicol ; 131(4): 217-223, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35790078

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by premature ageing and early death at a mean age of 14.7 years. At the molecular level, HGPS is caused by a de novo heterozygous mutation in LMNA, the gene encoding A-type lamins (mainly lamin A and C) and nuclear proteins, which have important cellular functions related to structure of the nuclear envelope. The LMNA mutation leads to the synthesis of a truncated prelamin A protein (called progerin), which cannot undergo normal processing to mature lamin A. In normal cells, prelamin A processing involves four posttranslational processing steps catalysed by four different enzymes. In HGPS cells, progerin accumulates as a farnesylated and methylated intermediate in the nuclear envelope where it is toxic and causes nuclear shape abnormalities and senescence. Numerous efforts have been made to target and reduce the toxicity of progerin, eliminate its synthesis and enhance its degradation, but as of today, only the use of farnesyltransferase inhibitors is approved for clinical use in HGPS patients. Here, we review the main current strategies that are being evaluated for treating HGPS, and we focus on efforts to target the posttranslational processing of progerin.


Asunto(s)
Progeria , Adolescente , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/uso terapéutico , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas Nucleares/genética , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Procesamiento Proteico-Postraduccional
9.
Nat Commun ; 13(1): 3068, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654881

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature ageing disorder caused by a point mutation in the LMNA gene (LMNA c.1824 C > T), resulting in the production of a detrimental protein called progerin. Adenine base editors recently emerged with a promising potential for HGPS gene therapy. However adeno-associated viral vector systems currently used in gene editing raise concerns, and the long-term effects of heterogeneous mutation correction in highly proliferative tissues like the skin are unknown. Here we use a non-integrative transient lentiviral vector system, expressing an adenine base editor to correct the HGPS mutation in the skin of HGPS mice. Transient adenine base editor expression corrected the mutation in 20.8-24.1% of the skin cells. Four weeks post delivery, the HGPS skin phenotype was improved and clusters of progerin-negative keratinocytes were detected, indicating that the mutation was corrected in both progenitor and differentiated skin cells. These results demonstrate that transient non-integrative viral vector mediated adenine base editor expression is a plausible approach for future gene-editing therapies.


Asunto(s)
Progeria , Adenina , Animales , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Mutación , Fenotipo , Progeria/genética , Progeria/metabolismo , Progeria/terapia
10.
J Autoimmun ; 130: 102843, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35643017

RESUMEN

Conditional mutation of protein geranylgeranyltransferase type I (GGTase-I) in macrophages (GLC) activates Rho-GTPases and causes arthritis in mice. Knocking out Rag1 in GLC mice alleviates arthritis which indicates that lymphocytes are required for arthritis development in those mice. To study GLC dependent changes in the adaptive immunity, we isolated CD4+ T cells from GLC mice (CD4+GLCs). Spleen and joint draining lymph nodes (dLN) CD4+GLCs exhibited high expression of Cdc42 and Rac1, which repressed the caudal HOXA proteins and activated the mechanosensory complex to facilitate migration. These CDC42/RAC1 rich CD4+GLCs presented a complete signature of GARP+NRP1+IKZF2+FOXP3+ regulatory T cells (Tregs) of thymic origin. Activation of the ß-catenin/Lef1 axis promoted a pro-inflammatory Th1 phenotype of Tregs, which was strongly associated with arthritis severity. Knockout of Cdc42 in macrophages of GLC mice affected CD4+ cell biology and triggered development of non-thymic Tregs. Knockout of Rac1 and RhoA had no such effects on CD4+ cells although it alleviated arthritis in GLC mice. Disrupting macrophage and T cell interaction with CTLA4 fusion protein reduced the Th1-driven inflammation and enrichment of thymic Tregs into dLNs. Antigen challenge reinforced the CD4+GLC phenotype in non-arthritic heterozygote GLC mice and increased accumulation of Rho-GTPase expressing thymic Tregs in dLNs. Our study demonstrates an unexpected role of macrophages in stimulating the development of pro-inflammatory thymic Tregs and reveal activation of Rho-GTPases behind their arthritogenic phenotype.


Asunto(s)
Artritis , Timo , Proteínas de Unión al GTP rho , Animales , Factores de Transcripción Forkhead/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Linfocitos T Reguladores , Timo/inmunología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
11.
Nat Commun ; 13(1): 2958, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618718

RESUMEN

The pleiotropic function of long noncoding RNAs is well recognized, but their direct role in governing metabolic homeostasis is less understood. Here, we describe a human adipocyte-specific lncRNA, ADIPINT, that regulates pyruvate carboxylase, a pivotal enzyme in energy metabolism. We developed an approach, Targeted RNA-protein identification using Orthogonal Organic Phase Separation, which identifies that ADIPINT binds to pyruvate carboxylase and validated the interaction with electron microscopy. ADIPINT knockdown alters the interactome and decreases the abundance and enzymatic activity of pyruvate carboxylase in the mitochondria. Reduced ADIPINT or pyruvate carboxylase expression lowers adipocyte lipid synthesis, breakdown, and lipid content. In human white adipose tissue, ADIPINT expression is increased in obesity and linked to fat cell size, adipose insulin resistance, and pyruvate carboxylase activity. Thus, we identify ADIPINT as a regulator of lipid metabolism in human white adipocytes, which at least in part is mediated through its interaction with pyruvate carboxylase.


Asunto(s)
Piruvato Carboxilasa , ARN Largo no Codificante , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Humanos , Lípidos , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
13.
Nat Metab ; 4(2): 190-202, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165448

RESUMEN

The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.


Asunto(s)
Adipocitos Blancos , Creatina , Adipocitos Blancos/metabolismo , Animales , Humanos , Inflamación/metabolismo , Ratones , Obesidad/metabolismo , Fosfocreatina
14.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379110

RESUMEN

Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The TgCreERT2;BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.


Asunto(s)
Antineoplásicos , Neoplasias de la Tiroides , Animales , Femenino , Masculino , Ratones , Mutación/genética , Mutación Puntual , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Microambiente Tumoral
15.
ACS Cent Sci ; 7(8): 1292-1294, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34471672
16.
Am J Pathol ; 191(11): 2023-2038, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34400131

RESUMEN

Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. This limited effect may be explained by an additional, less vascular endothelial growth factor-driven form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-induced, phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cells were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, in vitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation in vitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.


Asunto(s)
Melanoma/patología , Neovascularización Patológica/patología , Neoplasias Cutáneas/patología , Anciano , Anciano de 80 o más Años , Animales , Femenino , Xenoinjertos , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/metabolismo , Ratones , Persona de Mediana Edad , Neovascularización Patológica/metabolismo , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
17.
Acta Neuropathol Commun ; 9(1): 129, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315531

RESUMEN

The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Farnesiltransferasa/genética , Neuronas/metabolismo , Prenilación de Proteína/genética , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular , Farnesiltransferasa/metabolismo , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
18.
Eur Heart J ; 42(43): 4481-4492, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34297830

RESUMEN

AIMS: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to ß-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of ß1-adrenergic receptors. CONCLUSIONS: Our findings suggest that cardiac glycosphingolipids are required to maintain ß-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.


Asunto(s)
Glucosiltransferasas , Miocitos Cardíacos , Animales , Cardiomegalia , Glucosiltransferasas/genética , Ratones , Receptores Adrenérgicos
19.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557356

RESUMEN

Dietary antioxidants and supplements are widely used to protect against cancer, even though it is now clear that antioxidants can promote tumor progression by helping cancer cells to overcome barriers of oxidative stress. Although recent studies have, in great detail, explored the role of antioxidants in lung and skin tumors driven by RAS and RAF mutations, little is known about the impact of antioxidant supplementation on other cancers, including Wnt-driven tumors originating from the gut. Here, we show that supplementation with the antioxidants N-acetylcysteine (NAC) and vitamin E promotes intestinal tumor progression in the ApcMin mouse model for familial adenomatous polyposis, a hereditary form of colorectal cancer, driven by Wnt signaling. Both antioxidants increased tumor size in early neoplasias and tumor grades in more advanced lesions without any impact on tumor initiation. Importantly, NAC treatment accelerated tumor progression at plasma concentrations comparable to those obtained in human subjects after prescription doses of the drug. These results demonstrate that antioxidants play an important role in the progression of intestinal tumors, which may have implications for patients with or predisposed to colorectal cancer.

20.
Life Sci Alliance ; 4(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33593878

RESUMEN

IL-15 priming of NK cells is a broadly accepted concept, but the dynamics and underlying molecular mechanisms remain poorly understood. We show that as little as 5 min of IL-15 treatment in vitro, followed by removal of excess cytokines, results in a long-lasting, but reversible, augmentation of NK cell responsiveness upon activating receptor cross-linking. In contrast to long-term stimulation, improved NK cell function after short-term IL-15 priming was not associated with enhanced metabolism but was based on the increased steady-state phosphorylation level of signalling molecules downstream of activating receptors. Inhibition of JAK3 eliminated this priming effect, suggesting a cross talk between the IL-15 receptor and ITAM-dependent activating receptors. Increased signalling molecule phosphorylation levels, calcium flux, and IFN-γ secretion lasted for up to 3 h after IL-15 stimulation before returning to baseline. We conclude that IL-15 rapidly and reversibly primes NK cell function by modulating activating receptor signalling. Our findings suggest a mechanism by which NK cell reactivity can potentially be maintained in vivo based on only brief encounters with IL-15 trans-presenting cells.


Asunto(s)
Metabolismo Energético , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Transducción de Señal , Animales , Biomarcadores , Citocinas/metabolismo , Inmunofenotipificación , Interferón gamma/metabolismo , Interleucina-15/farmacología , Interleucina-2/metabolismo , Interleucina-2/farmacología , Células Asesinas Naturales/efectos de los fármacos , Activación de Linfocitos , Ratones , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA