Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Nutr ; 154(7): 2143-2156, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703891

RESUMEN

BACKGROUND: ß-casein is the main casein constituent in human milk (HM) and a source of bioactive peptides for the developing gastrointestinal tract and immune system. Infant formulas contain less ß-casein than HM, but whether different concentrations of ß-casein affect tolerability and gut and immune maturation in newborns is unknown. OBJECTIVES: Using near-term piglets as a model for newborn infants, we investigated whether increasing the ß-casein fraction in bovine-based formula is clinically safe and may improve gut and immune maturation. METHODS: Three groups of near-term pigs (96% gestation) were fed formula with bovine casein and whey protein (ratio 40:60): 1) standard skim milk casein (BCN-standard, 35% ß-casein of total casein, n = 18); 2) ß-casein enrichment to HM concentrations (BCN-medium, 65%, n = 19); and 3) high ß-casein enrichment (BCN-high, 91%, n = 19). A reference group was fed 100% whey protein concentrate (WPC) as protein (WPC, n = 18). Intestinal and immune parameters were assessed before and after euthanasia on day 5. RESULTS: Clinical variables (mortality, activity, body growth, and diarrhea) were similar among the groups, and no differences in intestinal or biochemical parameters were observed between BCN-standard and BCN-medium pigs. However, pigs receiving high amounts of ß-casein (BCN-high) had lower small intestine weight and tended to have more intestinal complications (highest gut pathology score, permeability, and interleukin-8) than the other groups, particularly those receiving no casein (WPC pigs). Blood lymphocyte, thrombocyte, and reticulocyte counts were increased with higher ß-casein, whereas eosinophil counts were reduced. In vitro blood immune cell responses were similar among groups. CONCLUSIONS: ß-casein enrichment of bovine-based formula to HM concentrations is clinically safe, as judged from newborn, near-term pigs, whereas no additional benefits to gut maturation were observed. However, excessive ß-casein supplementation, beyond concentrations in HM, may potentially induce gut inflammation together with increased blood cell populations relative to natural ß-casein concentrations or pure whey-based formula.


Asunto(s)
Animales Recién Nacidos , Caseínas , Proteína de Suero de Leche , Animales , Caseínas/administración & dosificación , Porcinos , Proteína de Suero de Leche/administración & dosificación , Bovinos , Tracto Gastrointestinal/efectos de los fármacos , Fórmulas Infantiles , Leche/química
2.
Mol Nutr Food Res ; 68(6): e2300458, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38389157

RESUMEN

SCOPE: Processing of whey protein concentrate (WPC) for infant formulas may induce protein modifications with severe consequences for preterm newborn development. The study investigates how conventional WPC and a gently processed skim milk-derived WPC (SPC) affect gut and immune development after birth. METHODS AND RESULTS: Newborn, preterm pigs used as a model of preterm infants were fed formula containing WPC, SPC, extra heat-treated SPC (HT-SPC), or stored HT-SPC (HTS-SPC) for 5 days. SPC contained no protein aggregates and more native lactoferrin, and despite higher Maillard reaction product (MRP) formation, the clinical response and most gut and immune parameters are similar to WPC pigs. SPC feeding negatively impacts intestinal MRP accumulation, mucosa, and bacterial diversity. In contrast, circulating T-cells are decreased and oxidative stress- and inflammation-related genes are upregulated in WPC pigs. Protein aggregation and MRP formation increase in HTS-SPC, leading to reduced antibacterial activity, lactase/maltase ratio, circulating neutrophils, and cytotoxic T-cells besides increased gut MRP accumulation and expression of TNFAIP3. CONCLUSION: The gently processed SPC has more native protein, but higher MRP levels than WPC, resulting in similar tolerability but subclinical adverse gut effects in preterm pigs. Additional heat treatment and storage further induce MRP formation, gut inflammation, and intestinal mucosal damage.


Asunto(s)
Fórmulas Infantiles , Leche , Humanos , Recién Nacido , Lactante , Animales , Porcinos , Proteína de Suero de Leche , Intestinos/fisiología , Recien Nacido Prematuro , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA