Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39115541

RESUMEN

Dendritic cell (DC) activation and function are underpinned by profound changes in cellular metabolism. Several studies indicate that the ability of DCs to promote tolerance is dependent on catabolic metabolism. Yet the contribution of AMP-activated kinase (AMPK), a central energy sensor promoting catabolism, to DC tolerogenicity remains unknown. Here, we show that AMPK activation renders human monocyte-derived DCs tolerogenic as evidenced by an enhanced ability to drive differentiation of regulatory T cells, a process dependent on increased RALDH activity. This is accompanied by several metabolic changes, including increased breakdown of glycerophospholipids, enhanced mitochondrial fission-dependent fatty acid oxidation, and upregulated glucose catabolism. This metabolic rewiring is functionally important as we found interference with these metabolic processes to reduce to various degrees AMPK-induced RALDH activity as well as the tolerogenic capacity of moDCs. Altogether, our findings reveal a key role for AMPK signaling in shaping DC tolerogenicity and suggest AMPK as a target to direct DC-driven tolerogenic responses in therapeutic settings.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diferenciación Celular , Células Dendríticas , Glucosa , Tolerancia Inmunológica , Metabolismo de los Lípidos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Activación Enzimática , Transducción de Señal , Células Cultivadas
2.
Nat Commun ; 15(1): 7458, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198484

RESUMEN

Cellular senescence is characterized by a permanent growth arrest and is associated with tissue aging and cancer. Senescent cells secrete a number of different cytokines referred to as the senescence-associated secretory phenotype (SASP), which impacts the surrounding tissue and immune response. Here, we find that senescent cells exhibit higher rates of protein synthesis compared to proliferating cells and identify eIF5A as a crucial regulator of this process. Polyamine metabolism and hypusination of eIF5A play a pivotal role in sustaining elevated levels of protein synthesis in senescent cells. Mechanistically, we identify a p53-dependent program in senescent cells that maintains hypusination levels of eIF5A. Finally, we demonstrate that functional eIF5A is required for synthesizing mitochondrial ribosomal proteins and monitoring the immune clearance of premalignant senescent cells in vivo. Our findings establish an important role of protein synthesis during cellular senescence and suggest a link between eIF5A, polyamine metabolism, and senescence immune surveillance.


Asunto(s)
Senescencia Celular , Factor 5A Eucariótico de Iniciación de Traducción , Mitocondrias , Factores de Iniciación de Péptidos , Biosíntesis de Proteínas , Proteínas de Unión al ARN , Proteína p53 Supresora de Tumor , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Mitocondrias/metabolismo , Animales , Ratones , Vigilancia Inmunológica , Poliaminas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Lisina/metabolismo , Lisina/análogos & derivados
3.
Cell Rep ; 43(9): 114681, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180751

RESUMEN

Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.

4.
J Extracell Vesicles ; 13(7): e12457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007430

RESUMEN

Seminal plasma induces immune tolerance towards paternal allogenic antigens within the female reproductive tract and during foetal development. Recent evidence suggests a role for extracellular vesicles in seminal plasma (spEVs). We isolated spEVs from seminal plasma that was donated by vasectomized men, thereby excluding any contributions from the testis or epididymis. Previous analysis demonstrated that such isolated spEVs originate mainly from the prostate. Here we observed that when isolated fluorescently labelled spEVs were mixed with peripheral blood mononuclear cells, they were endocytosed predominantly by monocytes, and to a lesser extent also by T-cells. In a mixed lymphocyte reaction, T-cell proliferation was inhibited by spEVs. A direct effect of spEVs on T-cells was demonstrated when isolated T cells were activated by anti-CD3/CD28 coated beads. Again, spEVs interfered with T cell proliferation, as well as with the expression of CD25 and the release of IFN-γ, TNF, and IL-2. Moreover, spEVs stimulated the expression of Foxp3 and IL-10 by CD4+CD25+CD127- T cells, indicating differentiation into regulatory T-cells (Tregs). Prior treatment of spEVs with proteinase K revoked their effects on T-cells, indicating a requirement for surface-exposed spEV proteins. The adenosine A2A receptor-specific antagonist CPI-444 also reduced effects of spEVs on T-cells, consistent with the notion that the development of Tregs and their immune suppressive functions are under the influence of adenosine-A2A receptor signalling. We found that adenosine is highly enriched in spEVs and propose that spEVs are targeted to and endocytosed by T-cells, after which they may release their adenosine content into the lumen of endosomes, thus allowing endosome-localized A2A receptor signalling in spEVs targeted T-cells. Collectively, these data support the idea that spEVs can prime T cells directly for differentiation into Tregs.


Asunto(s)
Diferenciación Celular , Vesículas Extracelulares , Semen , Linfocitos T Reguladores , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Semen/metabolismo , Semen/inmunología , Masculino , Proliferación Celular , Activación de Linfocitos/inmunología
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167283, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38851305

RESUMEN

Obesity represents a significant health challenge, intricately linked to conditions such as type II diabetes, metabolic syndrome, and hepatic steatosis. Several existing obesity treatments exhibit limited efficacy, undesirable side effects or a limited capability to maintain therapeutics effects in the long-term. Recently, modulation Coenzyme Q (CoQ) metabolism has emerged as a promising target for treatment of metabolic syndrome. This potential intervention could involve the modulation of endogenous CoQ biosynthesis by the use of analogs of the precursor of its biosynthesis, such as ß-resorcylic acid (ß-RA). Here, we show that oral supplementation with ß-RA, incorporated into the diet of diet-induced obese (DIO) mice, leads to substantial weight loss. The anti-obesity effects of ß-RA are partially elucidated through the normalization of mitochondrial CoQ metabolism in white adipose tissue (WAT). Additionally, we identify an HFN4α/LXR-dependent transcriptomic activation of the hepatic lipid metabolism that contributes to the anti-obesity effects of ß-RA. Consequently, ß-RA mitigates WAT hypertrophy, prevents hepatic steatosis, counteracts metabolic abnormalities in WAT and liver, and enhances glucose homeostasis by reducing the insulin/glucagon ratio and plasma levels of gastric inhibitory peptide (GIP). Moreover, pharmacokinetic evaluation of ß-RA supports its translational potential. Thus, ß-RA emerges as an efficient, safe, and translatable therapeutic option for the treatment and/or prevention of obesity, metabolic dysfunction-associated steatotic liver disease (MASLD).


Asunto(s)
Ratones Endogámicos C57BL , Obesidad , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Ratones , Masculino , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/administración & dosificación , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/patología , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Administración Oral , Dieta Alta en Grasa/efectos adversos , Humanos
6.
Eur J Immunol ; : e2350685, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890809

RESUMEN

Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.

7.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759626

RESUMEN

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Asunto(s)
Arginina , Cisteína , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutación , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Cisplatino/farmacología , Línea Celular Tumoral , Proteómica/métodos , Regulación Neoplásica de la Expresión Génica , Supervivencia Celular/efectos de los fármacos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética
8.
PLoS Pathog ; 20(3): e1012036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457376

RESUMEN

Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection.


Asunto(s)
Cardiovirus , Infecciones por Enterovirus , Enterovirus , Picornaviridae , Humanos , Enterovirus/fisiología , Virus de la Encefalomiocarditis/fisiología , Replicación Viral , Enterovirus Humano B/fisiología , Células HeLa
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382574

RESUMEN

Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.


Asunto(s)
Proteínas de Escherichia coli , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Galactosa/metabolismo , Antígenos O/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Antibacterianos
10.
Mol Oncol ; 18(7): 1759-1776, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38275212

RESUMEN

Metabolism plays a crucial role in regulating the function of immune cells in both health and disease, with altered metabolism contributing to the pathogenesis of cancer and many inflammatory diseases. The local microenvironment has a profound impact on the metabolism of immune cells. Therefore, immunological and metabolic heterogeneity as well as the spatial organization of cells in tissues should be taken into account when studying immunometabolism. Here, we highlight challenges of investigating metabolic communication. Additionally, we review the capabilities and limitations of current technologies for studying metabolism in inflamed microenvironments, including single-cell omics techniques, flow cytometry-based methods (Met-Flow, single-cell energetic metabolism by profiling translation inhibition (SCENITH)), cytometry by time of flight (CyTOF), cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), and mass spectrometry imaging. Considering the importance of metabolism in regulating immune cells in diseased states, we also discuss the applications of metabolomics in clinical research, as well as some hurdles to overcome to implement these techniques in standard clinical practice. Finally, we provide a flowchart to assist scientists in designing effective strategies to unravel immunometabolism in disease-relevant contexts.


Asunto(s)
Inflamación , Humanos , Inflamación/metabolismo , Inflamación/patología , Animales , Metabolómica/métodos , Análisis de la Célula Individual , Metabolismo Energético
11.
Front Oncol ; 13: 1155621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091139

RESUMEN

Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy.

12.
Eur Heart J Open ; 3(2): oead013, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36969380

RESUMEN

Aims: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. Methods and results: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/- mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-γ (IFN-γ). Gene set enrichment analysis identified IFN-γ-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. Conclusions: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio.

13.
Nat Commun ; 13(1): 5371, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100608

RESUMEN

The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma.


Asunto(s)
Antígenos de Neoplasias , Linfoma de Células B , Animales , Antígenos de Neoplasias/metabolismo , Ácidos Grasos/metabolismo , Linfoma de Células B/genética , Ratones , Palmitatos , Tetraspaninas/genética , Tetraspaninas/metabolismo
14.
Nat Commun ; 13(1): 4578, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931688

RESUMEN

Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.


Asunto(s)
Neoplasias Ováricas , Platino (Metal) , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Resistencia a Antineoplásicos , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/farmacología , Serina/farmacología
15.
Front Immunol ; 13: 777530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958593

RESUMEN

Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides.


Asunto(s)
Epigénesis Genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Catelicidinas/farmacología , Humanos , Inmunidad Innata , Macrófagos
16.
Front Immunol ; 13: 881166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844585

RESUMEN

CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.


Asunto(s)
Receptores Tipo II del Factor de Necrosis Tumoral , Linfocitos T Reguladores , Citocinas/metabolismo , Inmunidad , Recuento de Linfocitos , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo
17.
Redox Biol ; 55: 102403, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863266

RESUMEN

Defects in Coenzyme Q (CoQ) metabolism have been associated with primary mitochondrial disorders, neurodegenerative diseases and metabolic conditions. The consequences of CoQ deficiency have not been fully addressed, and effective treatment remains challenging. Here, we use mice with primary CoQ deficiency (Coq9R239X), and we demonstrate that CoQ deficiency profoundly alters the Q-junction, leading to extensive changes in the mitochondrial proteome and metabolism in the kidneys and, to a lesser extent, in the brain. CoQ deficiency also induces reactive gliosis, which mediates a neuroinflammatory response, both of which lead to an encephalopathic phenotype. Importantly, treatment with either vanillic acid (VA) or ß-resorcylic acid (ß-RA), two analogs of the natural precursor for CoQ biosynthesis, partially restores CoQ metabolism, particularly in the kidneys, and induces profound normalization of the mitochondrial proteome and metabolism, ultimately leading to reductions in gliosis, neuroinflammation and spongiosis and, consequently, reversing the phenotype. Together, these results provide key mechanistic insights into defects in CoQ metabolism and identify potential disease biomarkers. Furthermore, our findings clearly indicate that the use of analogs of the CoQ biosynthetic precursor is a promising alternative therapy for primary CoQ deficiency and has potential for use in the treatment of more common neurodegenerative and metabolic diseases that are associated with secondary CoQ deficiency.

18.
Mol Omics ; 18(1): 19-30, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34879122

RESUMEN

During the development of drug resistance, multiple myeloma (MM) cells undergo changes to their metabolism. However, how these metabolic changes can be exploited to improve treatment efficacy is not known. Here we demonstrate that targeting coenzyme Q10 (CoQ) biosynthesis through the mevalonate pathway works in synergy with the proteasome inhibitor bortezomib (BTZ) in MM. We show that gene expression signatures relating to the mitochondrial tricarboxylic acid (TCA) cycle and electron transport chain (ETC) predispose to clinical BTZ resistance and poor prognosis in MM patients. Mechanistically, BTZ-resistant cells show increased activity of glutamine-driven TCA cycle and oxidative phosphorylation, together with an increased vulnerability towards ETC inhibition. Moreover, BTZ resistance is accompanied by high levels of the mitochondrial electron carrier CoQ, while the mevalonate pathway inhibitor simvastatin increases cell death and decreases CoQ levels, specifically in BTZ-resistant cells. Both in vitro and in vivo, simvastatin enhances the effect of bortezomib treatment. Our study links CoQ synthesis to drug resistance in MM and provides a novel avenue for improving BTZ responses through statin-induced inhibition of mitochondrial metabolism.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib , Mieloma Múltiple , Ubiquinona , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bortezomib/administración & dosificación , Bortezomib/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Humanos , Terapia Molecular Dirigida , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Simvastatina/administración & dosificación , Simvastatina/farmacología , Ubiquinona/metabolismo
19.
Cells ; 10(9)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34571936

RESUMEN

Multiple myeloma (MM) is a hematological malignancy that exhibits aberrantly high levels of proteasome activity. While treatment with the proteasome inhibitor bortezomib substantially increases overall survival of MM patients, acquired drug resistance remains the main challenge for MM treatment. Using a combination treatment of docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) and bortezomib, it was demonstrated previously that pretreatment with DHA/EPA significantly increased bortezomib chemosensitivity in MM cells. In the current study, both transcriptome and metabolome analysis were performed to comprehensively evaluate the underlying mechanism. It was demonstrated that pretreating MM cells with DHA/EPA before bortezomib potently decreased the cellular glutathione (GSH) level and altered the expression of the related metabolites and key enzymes in GSH metabolism, whereas simultaneous treatment only showed minor effects on these factors, thereby suggesting the critical role of GSH degradation in overcoming bortezomib resistance in MM cells. Moreover, RNA-seq results revealed that the nuclear factor erythroid 2-related factor 2 (NRF2)-activating transcription factor 3/4 (ATF3/4)-ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1) signaling pathway may be implicated as the central player in the GSH degradation. Pathways of necroptosis, ferroptosis, p53, NRF2, ATF4, WNT, MAPK, NF-κB, EGFR, and ERK may be connected to the tumor suppressive effect caused by pretreatment of DHA/EPA prior to bortezomib. Collectively, this work implicates GSH degradation as a potential therapeutic target in MM and provides novel mechanistic insights into its significant role in combating bortezomib resistance.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Bortezomib/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Transducción de Señal , Células Tumorales Cultivadas
20.
Mol Cell ; 81(22): 4709-4721.e9, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34562372

RESUMEN

mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis. Despite protein quality control mechanisms, amino acid shortage in melanoma induces aberrant proteins by ribosomal frameshifting. The extent and the underlying mechanisms related to this phenomenon are yet unknown. Here, we show that tryptophan depletion-induced ribosomal frameshifting is a widespread phenomenon in cancer. We termed this event sloppiness and strikingly observed its association with MAPK pathway hyperactivation. Sloppiness is stimulated by RAS activation in primary cells, suppressed by pharmacological inhibition of the oncogenic MAPK pathway in sloppy cells, and restored in cells with acquired resistance to MAPK pathway inhibition. Interestingly, sloppiness causes aberrant peptide presentation at the cell surface, allowing recognition and specific killing of drug-resistant cancer cells by T lymphocytes. Thus, while oncogenes empower cancer progression and aggressiveness, they also expose a vulnerability by provoking the production of aberrant peptides through sloppiness.


Asunto(s)
Neoplasias/genética , Oncogenes , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Linfocitos T/citología , Animales , Carcinogénesis , Membrana Celular/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Mutación del Sistema de Lectura , Sistema de Lectura Ribosómico , Humanos , Inmunoterapia/métodos , Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Ratones , Neoplasias/metabolismo , Péptidos/química , Inhibidores de Proteínas Quinasas , Ribosomas/metabolismo , Linfocitos T/metabolismo , Triptófano/química , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA