Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Eur J Clin Invest ; : e14304, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210517

RESUMEN

BACKGROUND: Intraepithelial lymphocytes are the first line of defence of the human intestinal immune system. Besides, their composition is altered on patients with coeliac disease (CD), so they are considered as biomarkers with utility on their diagnose and/or monitoring. Our aim is to address their variability through the human gastrointestinal tract in health and characterized them in further depth in the coeliac duodenum. METHODS: Intraepithelial lymphocytes were isolated from human gastric, duodenal, ileal and colonic biopsies, then stained with specific antibodies and acquired by flow cytometry. RESULTS: Our results confirmed that the profile of Intraepithelial lymphocytes change through the length of the human gastrointestinal tract. Besides and given the central role that Interleukin-15 (IL-15) elicits on CD pathogenesis; we also assessed the expression of its receptor revealing that there was virtually no functional IL-15 receptor on duodenal Intraepithelial lymphocytes. Nevertheless and contrary to our expectations, the active IL-15 receptor was not increased either on Intraepithelial lymphocytes from CD patients. CONCLUSIONS: IL-15 might require additional stimulus to activate intraepithelial lymphocytes. These findings may provide novel tools to aid on a CD diagnosis and/or monitoring, at the time that provide the bases to perform functional studies in order of getting a deeper insight in the specific function that Intraepithelial lymphocytes elicit on CD pathogenesis.

2.
Front Oncol ; 14: 1407580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868532

RESUMEN

Despite that colorectal and liver cancer are among the most prevalent tumours in the world, the identification of non-invasive biomarkers to aid on their diagnose and subsequent prognosis is a current unmet need that would diminish both their incidence and mortality rates. In this context, conventional flow cytometry has been widely used in the screening of biomarkers with clinical utility in other malignant processes like leukaemia or lymphoma. Therefore, in this review, we will focus on how advanced cytometry panels covering over 40 parameters can be applied on the study of the immune system from patients with colorectal and hepatocellular carcinoma and how that can be used on the search of novel biomarkers to aid or diagnose, prognosis, and even predict clinical response to different treatments. In addition, these multiparametric and unbiased approaches can also provide novel insights into the specific immunopathogenic mechanisms governing these malignant diseases, hence potentially unravelling novel targets to perform immunotherapy or identify novel mechanisms, rendering the development of novel treatments. As a consequence, computational cytometry approaches are an emerging methodology for the early detection and predicting therapies for gastrointestinal cancers.

3.
J Infect Dis ; 230(4): 901-911, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-38865487

RESUMEN

BACKGROUND: Extracellular vesicles (EVs), containing microRNAs (miRNAs) and other molecules, play a central role in intercellular communication, especially in viral infections caused by SARS-CoV-2. This study explores the miRNA profiles in plasma-derived EVs from patients with severe COVID-19 vs controls, identifying potential mortality predictors. METHODS: This prospective study included 36 patients with severe COVID-19 and 33 controls without COVID-19. EV-derived miRNAs were sequenced, and bioinformatics and differential expression analysis between groups were performed. The plasma miRNA profile of an additional cohort of patients with severe COVID-19 (n = 32) and controls (n = 12) was used to compare with our data. Survival analysis identified potential mortality predictors among the significantly differentially expressed (SDE) miRNAs in EVs. RESULTS: Patients with severe COVID-19 showed 50 SDE miRNAs in plasma-derived EVs. These miRNAs were associated with pathways related to inflammation and cell adhesion. Fifteen of these plasma-derived EV miRNAs were SDE in the plasma of severe cases vs controls. Two miRNAs, hsa-miR-1469 and hsa-miR-6124, were identified as strong mortality predictors with an area under the receiver operating characteristic curve of 0.938. CONCLUSIONS: This research provides insights into the role of miRNAs within EVs in severe COVID-19 and their potential as clinical biomarkers for mortality.


Asunto(s)
COVID-19 , Vesículas Extracelulares , MicroARNs , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/sangre , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/sangre , MicroARNs/genética , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Perfilación de la Expresión Génica , Adulto , Biomarcadores/sangre
4.
Front Immunol ; 15: 1374611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646544

RESUMEN

Objectives: The aim of the study was to characterize the circulating immunome of patients with EoE before and after proton pump inhibitor (PPI) treatment in order to identify potential non-invasive biomarkers of treatment response. Methods: PBMCs from 19 healthy controls and 24 EoE patients were studied using a 39-plex spectral cytometry panel. The plasmacytoid dendritic cell (pDC) population was differentially characterized by spectral cytometry analysis and immunofluorescence assays in esophageal biopsies from 7 healthy controls and 13 EoE patients. Results: Interestingly, EoE patients at baseline had lower levels of circulating pDC compared with controls. Before treatment, patients with EoE who responded to PPI therapy had higher levels of circulating pDC and classical monocytes, compared with non-responders. Moreover, following PPI therapy pDC levels were increased in all EoE patients, while normal levels were only restored in PPI-responding patients. Finally, circulating pDC levels inversely correlated with peak eosinophil count and pDC count in esophageal biopsies. The number of tissue pDCs significantly increased during active EoE, being even higher in non-responder patients when compared to responder patients pre-PPI. pDC levels decreased after PPI intake, being further restored almost to control levels in responder patients post-PPI. Conclusions: We hereby describe a unique immune fingerprint of EoE patients at diagnosis. Moreover, circulating pDC may be also used as a novel non-invasive biomarker to predict subsequent response to PPI treatment.


Asunto(s)
Biomarcadores , Células Dendríticas , Esofagitis Eosinofílica , Inhibidores de la Bomba de Protones , Humanos , Inhibidores de la Bomba de Protones/uso terapéutico , Esofagitis Eosinofílica/tratamiento farmacológico , Esofagitis Eosinofílica/inmunología , Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/sangre , Masculino , Femenino , Adulto , Biomarcadores/sangre , Células Dendríticas/inmunología , Persona de Mediana Edad , Eosinófilos/inmunología , Resultado del Tratamiento , Adulto Joven , Biopsia , Estudios de Casos y Controles
5.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321133

RESUMEN

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Asunto(s)
COVID-19 , Humanos , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad , SARS-CoV-2 , Genotipo
6.
Inflamm Bowel Dis ; 30(2): 167-182, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536268

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) is a prevalent chronic noncurable disease associated with profound metabolic changes. The discovery of novel molecular indicators for unraveling IBD etiopathogenesis and the diagnosis and prognosis of IBD is therefore pivotal. We sought to determine the distinctive metabolic signatures from the different IBD subgroups before treatment initiation. METHODS: Serum and urine samples from newly diagnosed treatment-naïve IBD patients and age and sex-matched healthy control (HC) individuals were investigated using proton nuclear magnetic resonance spectroscopy. Metabolic differences were identified based on univariate and multivariate statistical analyses. RESULTS: A total of 137 Crohn's disease patients, 202 ulcerative colitis patients, and 338 HC individuals were included. In the IBD cohort, several distinguishable metabolites were detected within each subgroup comparison. Most of the differences revealed alterations in energy and amino acid metabolism in IBD patients, with an increased demand of the body for energy mainly through the ketone bodies. As compared with HC individuals, differences in metabolites were more marked and numerous in Crohn's disease than in ulcerative colitis patients, and in serum than in urine. In addition, clustering analysis revealed 3 distinct patient profiles with notable differences among them based on the analysis of their clinical, anthropometric, and metabolomic variables. However, relevant phenotypical differences were not found among these 3 clusters. CONCLUSIONS: This study highlights the molecular alterations present within the different subgroups of newly diagnosed treatment-naïve IBD patients. The metabolomic profile of these patients may provide further understanding of pathogenic mechanisms of IBD subgroups. Serum metabotype seemed to be especially sensitive to the onset of IBD.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/diagnóstico , Enfermedad de Crohn/diagnóstico , Metabolómica , Intestinos
7.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686257

RESUMEN

We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10-2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = -0.04, p-value = 1.3 × 10-3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10-4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10-2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , COVID-19 , Accidente Cerebrovascular Embólico , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , COVID-19/complicaciones , COVID-19/genética , Accidente Cerebrovascular Isquémico/genética , Arterias
8.
Methods Cell Biol ; 179: 69-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37625881

RESUMEN

Dendritic cells and macrophages are the main antigen-presenting cells (APC). In the gut, they control the mechanisms of tolerance toward commensals and nutrients, at the time that they maintain their capacity to trigger immune responses against invading pathogens. Nevertheless, this balance is not perfect as it can get disrupted like in inflammatory bowel disease (where they drive an abnormal immune response against the microbiota) or in coeliac disease (where they trigger an immune response against dietary gluten). Therefore, the study of human intestinal APC subsets is crucial not just to get a deeper insight in the mechanisms of human intestinal homeostasis, but also to understand the pathogenesis of inflammatory bowel disease and coeliac disease. Nevertheless, their study is quite complicated as despite their relevance, their numbers are scare in the intestinal mucosa. Therefore, we hereby describe different approaches to study human intestinal dendritic cell and macrophage subsets in the human intestinal mucosa.


Asunto(s)
Enfermedad Celíaca , Enfermedades Inflamatorias del Intestino , Humanos , Homeostasis , Macrófagos , Células Dendríticas
9.
Front Immunol ; 14: 1185517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457727

RESUMEN

Introduction: The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods: We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results: Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion: We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/patología , Células CACO-2 , Tapsigargina , Estrés del Retículo Endoplásmico/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Células Epiteliales/metabolismo , Hidroximetilglutaril-CoA Sintasa
11.
Rev Esp Enferm Dig ; 115(12): 727-728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36926907

RESUMEN

Breath tests with glucose, lactulose or lactitol are useful for diagnosis of small intestinal bacterial overgrowth (SIBO). Nevertheless, they have suboptimal sensitivity and specificity and, indeed, are positive in a considerable number of patients with irritable bowel syndrome (IBS). The complexity in the management of patients with functional intestinal disorders and the availability of these tests are leading to frequent diagnoses of SIBO. Intestinal Fatty-Acid Binding protein (I-FABP) is a protein present in the cytosol of intestinal epithelial cells. Its plasmatic levels have been related to different enteropathies and, therefore, could be a marker of early intestinal damage with unconfirmed clinical utility. Hence, we have studied the plasmatic I-FABP level of patients who are requested a lactitol test to confirm SIBO and related it to clinical and laboratory characteristics and SIBO test results.


Asunto(s)
Hidrógeno , Síndrome del Colon Irritable , Humanos , Hidrógeno/metabolismo , Intestino Delgado/microbiología , Síndrome del Colon Irritable/diagnóstico , Lactulosa , Pruebas Respiratorias/métodos
12.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232381

RESUMEN

Although the COVID-19 disease has developed into a worldwide pandemic, its pathophysiology remains to be fully understood. Insulin-degrading enzyme (IDE), a zinc-metalloprotease with a high affinity for insulin, has been found in the interactomes of multiple SARS-CoV-2 proteins. However, the relevance of IDE in the innate and adaptative immune responses elicited by circulating peripheral blood mononuclear cells is unknown. Here, we show that IDE is highly expressed on the surface of circulating monocytes, T-cells (both CD4+ and CD4-), and, to a lower extent, in B-cells from healthy controls. Notably, IDE's surface expression was upregulated on monocytes from COVID-19 patients at diagnosis, and it was increased in more severe patients. However, IDE's surface expression was downregulated (relative to healthy controls) 3 months after hospital discharge in all the studied immune subsets, with this effect being more pronounced in males than in females, and thus it was sex-dependent. Additionally, IDE levels in monocytes, CD4+ T-cells, and CD4- T-cells were inversely correlated with circulating insulin levels in COVID-19 patients (both at diagnosis and after hospital discharge). Of note, high glucose and insulin levels downregulated IDE surface expression by ~30% in the monocytes isolated from healthy donors, without affecting its expression in CD4+ T-cells and CD4- T-cells. In conclusion, our studies reveal the sex- and metabolism-dependent regulation of IDE in monocytes, suggesting that its regulation might be important for the recruitment of immune cells to the site of infection, as well as for glucometabolic control, in COVID-19 patients.


Asunto(s)
COVID-19 , Insulisina , Prueba de COVID-19 , Femenino , Glucosa , Hospitales , Humanos , Insulina/metabolismo , Insulisina/metabolismo , Leucocitos Mononucleares/metabolismo , Linfocitos/metabolismo , Masculino , Monocitos/metabolismo , SARS-CoV-2 , Zinc
13.
Nat Commun ; 13(1): 4597, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933486

RESUMEN

SARS-CoV-2 infection can cause an inflammatory syndrome (COVID-19) leading, in many cases, to bilateral pneumonia, severe dyspnea, and in ~5% of these, death. DNA methylation is known to play an important role in the regulation of the immune processes behind COVID-19 progression, however it has not been studied in depth. In this study, we aim to evaluate the implication of DNA methylation in COVID-19 progression by means of a genome-wide DNA methylation analysis combined with DNA genotyping. The results reveal the existence of epigenomic regulation of functional pathways associated with COVID-19 progression and mediated by genetic loci. We find an environmental trait-related signature that discriminates mild from severe cases and regulates, among other cytokines, IL-6 expression via the transcription factor CEBP. The analyses suggest that an interaction between environmental contribution, genetics, and epigenetics might be playing a role in triggering the cytokine storm described in the most severe cases.


Asunto(s)
COVID-19 , COVID-19/genética , Síndrome de Liberación de Citoquinas , Citocinas , Metilación de ADN/genética , Humanos , SARS-CoV-2/genética
14.
Biomedicines ; 10(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009431

RESUMEN

Inflammatory bowel disease (IBD) is an idiopathic and chronic disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Both diseases show an uncontrolled intestinal immune response that generates tissue inflammation. Dendritic cells (DCs) are antigen-presenting cells that play a key role in tolerance maintenance in the gastrointestinal mucosa. Although it has been reported that DC recruitment by the intestinal mucosa is more prominent in IBD patients, the specific mechanisms governing this migration are currently unknown. In this study, the expression of several homing markers and the migratory profile of circulating DC subsets towards intestinal chemo-attractants were evaluated and the effect of biological drugs with different mechanisms of action, such as anti-TNFα or anti-integrin α4ß7 (vedolizumab), on this mechanism in healthy controls (HCs) and IBD patients was also assessed. Our results revealed that type 2 conventional DCs (cDC2) express differential homing marker profiles in UC and CD patients compared to HCs. Indeed, integrin ß7 was differentially modulated by vedolizumab in CD and UC. Additionally, although CCL2 displayed a chemo-attractant effect over cDC2, while biological therapies did not modulate the expression of the homing markers, we paradoxically found that anti-TNF-treated cDC2 increased their migratory capacity towards CCL2 in HCs and IBD. Our results therefore suggest a key role for cDC2 migration towards the intestinal mucosa in IBD, something that could be explored in order to develop novel diagnostic biomarkers or to unravel new immunomodulatory targets in IBD.

15.
Sci Rep ; 12(1): 1650, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102215

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the coronavirus strain causing the respiratory pandemic COVID-19 (coronavirus disease 2019). To understand the pathobiology of SARS-CoV-2 in humans it is necessary to unravel the metabolic changes that are produced in the individuals once the infection has taken place. The goal of this work is to provide new information about the altered biomolecule profile and with that the altered biological pathways of patients in different clinical situations due to SARS-CoV-2 infection. This is done via metabolomics using HPLC-QTOF-MS analysis of plasma samples at COVID-diagnose from a total of 145 adult patients, divided into different clinical stages based on their subsequent clinical outcome (25 negative controls (non-COVID); 28 positive patients with asymptomatic disease not requiring hospitalization; 27 positive patients with mild disease defined by a total time in hospital lower than 10 days; 36 positive patients with severe disease defined by a total time in hospital over 20 days and/or admission at the ICU; and 29 positive patients with fatal outcome or deceased). Moreover, follow up samples between 2 and 3 months after hospital discharge were also obtained from the hospitalized patients with mild prognosis. The final goal of this work is to provide biomarkers that can help to better understand how the COVID-19 illness evolves and to predict how a patient could progress based on the metabolites profile of plasma obtained at an early stage of the infection. In the present work, several metabolites were found as potential biomarkers to distinguish between the end-stage and the early-stage (or non-COVID) disease groups. These metabolites are mainly involved in the metabolism of carnitines, ketone bodies, fatty acids, lysophosphatidylcholines/phosphatidylcholines, tryptophan, bile acids and purines, but also omeprazole. In addition, the levels of several of these metabolites decreased to "normal" values at hospital discharge, suggesting some of them as early prognosis biomarkers in COVID-19 at diagnose.


Asunto(s)
Infecciones Asintomáticas/epidemiología , COVID-19/sangre , COVID-19/diagnóstico , Metaboloma , Metabolómica/métodos , Pandemias , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/epidemiología , COVID-19/fisiopatología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Admisión del Paciente , Reacción en Cadena de la Polimerasa/métodos , España/epidemiología
16.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910301

RESUMEN

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Citometría de Flujo , Infecciones/inmunología , Neoplasias/inmunología , Animales , Enfermedad Crónica , Humanos , Ratones , Guías de Práctica Clínica como Asunto
17.
Front Immunol ; 12: 726283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721388

RESUMEN

Severe status of coronavirus disease 2019 (COVID-19) is extremely associated to cytokine release. Moreover, it has been suggested that blood group is also associated with the prevalence and severity of this disease. However, the relationship between the cytokine profile and blood group remains unclear in COVID-19 patients. In this sense, we prospectively recruited 108 COVID-19 patients between March and April 2020 and divided according to ABO blood group. For the analysis of 45 cytokines, plasma samples were collected in the time of admission to hospital ward or intensive care unit and at the sixth day after hospital admission. The results show that there was a risk of more than two times lower of mechanical ventilation or death in patients with blood group O (log rank: p = 0.042). At first time, all statistically significant cytokine levels, except from hepatocyte growth factor, were higher in O blood group patients meanwhile the second time showed a significant drop, between 20% and 40%. In contrast, A/B/AB group presented a maintenance of cytokine levels during time. Hepatocyte growth factor showed a significant association with intubation or mortality risk in non-O blood group patients (OR: 4.229, 95% CI (2.064-8.665), p < 0.001) and also was the only one bad prognosis biomarker in O blood group patients (OR: 8.852, 95% CI (1.540-50.878), p = 0.015). Therefore, higher cytokine levels in O blood group are associated with a better outcome than A/B/AB group in COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Citocinas/sangre , SARS-CoV-2/fisiología , Sistema del Grupo Sanguíneo ABO , Anciano , Biomarcadores , COVID-19/diagnóstico , COVID-19/mortalidad , Progresión de la Enfermedad , Femenino , Factor de Crecimiento de Hepatocito/sangre , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Respiración Artificial , Índice de Severidad de la Enfermedad , Análisis de Supervivencia
18.
J Clin Invest ; 131(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597274

RESUMEN

BackgroundThere is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.MethodsWe combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.ResultsWe found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors.ConclusionsThe major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.


Asunto(s)
Alelos , COVID-19 , Cromosomas Humanos Par 3/genética , Frecuencia de los Genes , Sitios Genéticos , Polimorfismo Genético , SARS-CoV-2 , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/genética , COVID-19/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Factores de Riesgo
19.
J Pers Med ; 11(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357148

RESUMEN

Antigen tests or polymerase chain reaction (PCR) amplification are currently COVID-19 diagnostic tools. However, developing complementary diagnosis tools is mandatory. Thus, we performed a plasma cytokine array in COVID-19 patients to identify novel diagnostic biomarkers. A discovery-validation study in two independent prospective cohorts was performed. The discovery cohort included 136 COVID-19 and non-COVID-19 patients recruited consecutively from 24 March to 11 April 2020. Forty-five cytokines' quantification by the MAGPIX system (Luminex Corp., Austin, TX, USA) was performed in plasma samples. The validation cohort included 117 patients recruited consecutively from 15 to 25 April 2020 for validating results by ELISA. COVID-19 patients showed different levels of multiple cytokines compared to non-COVID-19 patients. A single chemokine, IP-10, accurately identified COVID-19 patients who required hospital admission (AUC: 0.962; 95%CI (0.933-0.992); p < 0.001)). The results were validated in an independent cohort by multivariable analysis (OR: 25.573; 95%CI (8.127-80.469); p < 0.001) and AUROC (AUC: 0.900; 95%CI (0.846-0.954); p < 0.001). Moreover, showing IP-10 plasma levels over 173.35 pg/mL identified COVID-19 with higher sensitivity (86.20%) than the first SARS-CoV-2 PCR. Our discover-validation study identified IP-10 as a robust biomarker in clinical practice for COVID-19 diagnosis at hospital. Therefore, IP-10 could be used as a complementary tool in clinical practice, especially in emergency departments.

20.
Vaccines (Basel) ; 9(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34452057

RESUMEN

Murine dendritic cells, when pulsed with heat-killed Burkholderia pseudomallei and used to immunise naïve mice, have previously been shown to induce protective immunity in vivo. We have now demonstrated the in vitro priming of naïve human T cells against heat-killed B. pseudomallei, by co-culture with syngeneic B. pseudomallei-pulsed dendritic cells. Additionally, we have enriched the DC fraction such that a study of the differential response induced by pulsed DCs of either myeloid or plasmacytoid lineage in syngeneic human T cells was achievable. Whilst both mDCs and pDCs were activated by pulsing, the mDCs contributed the major response to B. pseudomallei with the expression of the migration marker CCR7 and a significantly greater secretion of the proinflammatory TNFα and IL1ß. When these DC factions were combined and used to prime syngeneic T cells, a significant proliferation was observed in the CD4+ fraction. Here, we have achieved human T cell priming in vitro with unadjuvanted B. pseudomallei, the causative organism of melioidosis, for which there is currently no approved vaccine. We propose that the approach we have taken could be used to screen for the human cellular response to candidate vaccines and formulations, in order to enhance the cell-mediated immunity required to protect against this intracellular pathogen and potentially more broadly against other, difficult-to-treat intracellular pathogens. To date, the polysaccharide capsule of B. pseudomallei, fused to a standard carrier protein, e.g., Crm, looks a likely vaccine candidate. Dendritic cells (DCs), providing, as they do, the first line of defence to infection, process and present microbial products to the immune system to direct downstream immune responses. Here, we have sought to use DCs ex vivo to identify immunogenic products from heat-killed B. pseudomallei. Using practical volumes of fresh human donor blood, we show that heat-killed B. pseudomallei activated and stimulated the expression of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 from both myeloid and plasmacytoid DCs. Furthermore, B. pseudomallei-pulsed DCs cultured with naïve syngeneic T cells ex vivo, induced the activation and proliferation of the CD4+ T-cell population, which was identified by cell surface marker staining using flow cytometry. Thus, both DC subsets are important for driving primary T helper cell responses to B. pseudomallei in healthy individuals and have the potential to be used to identify immunogenic components of B. pseudomallei for future therapies and vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA