RESUMEN
Symptoms of obsessive-compulsive disorder (OCD) may rarely occur in the context of genetic syndromes. So far, an association between obsessive-compulsive symptoms (OCS) and ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome has not been described as yet. A thoroughly phenotyped patient with OCS and ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome is presented. The 25-year-old male patient was admitted to in-patient psychiatric care due to OCD. A whole-exome sequencing analysis was initiated as the patient also showed an autistic personality structure, below average intelligence measures, craniofacial dysmorphia signs, sensorineural hearing loss, and sinus cavernoma as well as subtle cardiac and ophthalmological alterations. The diagnosis of Baraitser-Winter cerebrofrontofacial syndrome type 2 was confirmed by the detection of a heterozygous likely pathogenic variant in the ACTG1 gene [c.1003C > T; p.(Arg335Cys), ACMG class 4]. The automated analysis of magnetic resonance imaging (MRI) revealed changes in the orbitofrontal, parietal, and occipital cortex of both sides and in the right mesiotemporal cortex. Electroencephalography (EEG) revealed intermittent rhythmic delta activity in the occipital and right temporal areas. Right mesiotemporal MRI and EEG alterations could be caused by a small brain parenchymal defect with hemosiderin deposits after a cavernomectomy. This paradigmatic case provides evidence of syndromic OCS in ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome. The MRI findings are compatible with a dysfunction of the cortico-striato-thalamo-cortical loops involved in OCD. If a common pathophysiology is confirmed in future studies, corresponding patients with Baraitser-Winter cerebrofrontofacial syndrome type 2 should be screened for OCS. The association may also contribute to a better understanding of OCD pathophysiology.
Asunto(s)
Anomalías Craneofaciales , Trastorno Obsesivo Compulsivo , Anomalías Múltiples , Actinas , Adulto , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Epilepsia , Facies , Hemosiderina , Humanos , Discapacidad Intelectual , Lisencefalia , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/genéticaRESUMEN
In light microscopy, refractive index mismatches between media and sample cause spherical aberrations that often limit penetration depth and resolution. Optical clearing techniques can alleviate these mismatches, but they are so far limited to fixed samples. We present Iodixanol as a non-toxic medium supplement that allows refractive index matching in live specimens and thus substantially improves image quality in live-imaged primary cell cultures, planarians, zebrafish and human cerebral organoids.