Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Laryngoscope ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973624

RESUMEN

OBJECTIVES: Peritonsillar abscess (PTA) is a common deep space head and neck infection, which can be diagnosed with or without computed tomography (CT). CT poses a risk for false positives, leading to unnecessary abscess drainage attempts without benefit, whereas needle or open aspiration without imaging could potentially lead to missed abscess in need of treatment. This study considered the utility and impact of obtaining CT scans in patients with suspected PTA by comparing outcomes between CT and non-CT usage. METHODS: Retrospective cohort analysis using TriNetX datasets compared the outcomes of two cohorts: PTA without CT and PTA with CT. Measured outcomes included incision and drainage; quinsy adenotonsillectomy; recurrent PTA; airway emergency/obstruction; repeat emergency department (ED) visits; and need for antibiotics, opiates, or steroids. Odds ratios (OR) were calculated using a cohort analysis. RESULTS: The CT usage group had increased odds of receiving antibiotics (OR 3.043, [2.043-4.531]), opiates (OR 1.614, [1.138-1.289]), and steroids (OR 1.373, [1.108-1.702]), as well as a higher likelihood of returning to the ED (OR 5.900, [3.534-9.849]) and developing a recurrent PTA (OR 1.943, [1.410-2.677]). No significant differences were observed in the incidence of incision and drainage, quinsy adenotonsillectomy, or airway emergency/obstruction. CONCLUSION: Our study indicated that CT scans for PTA diagnosis were associated with increased prescription of antibiotics, opioids, steroids, return ED visits, and recurrent PTA. Future prospective trials are needed to determine if the use of CT scans indicates higher patient acuity that explains the potential negative outcomes. LEVEL OF EVIDENCE: Level II Laryngoscope, 2024.

2.
Nature ; 631(8020): 307-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898280

RESUMEN

Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality1. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces2. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlxGa1-x)0.5In0.5P multiple quantum well light-emitting diode. The spin accumulation in the multiple quantum well is detected through emission of circularly polarized light with a degree of polarization of up to 15 ± 4%. The chiral perovskite/III-V interface was characterized with X-ray photoelectron spectroscopy, cross-sectional scanning Kelvin probe force microscopy and cross-sectional transmission electron microscopy imaging, showing a clean semiconductor/semiconductor interface at which the Fermi level can equilibrate. These findings demonstrate that chiral perovskite semiconductors can transform well-developed semiconductor platforms into ones that can also control spin.


Asunto(s)
Compuestos de Calcio , Óxidos , Semiconductores , Temperatura , Titanio , Compuestos de Calcio/química , Titanio/química , Óxidos/química , Espectroscopía de Fotoelectrones
3.
Science ; 384(6698): 878-884, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781395

RESUMEN

Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based on R-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling-induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (-40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).

4.
ChemSusChem ; : e202400366, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538554

RESUMEN

Triboelectric nanogenerators (TENGs) have been widely used to harness various forms of mechanical energy for conversion to electrical energy. However, the contentious challenge in characterising TENGs is the lack of standard protocols for assessing mechanical-to-electrical energy conversion processes. Herein, macroscopic signal analysis is used to identify three key charging events within triboelectric signals: charge induction (CI), contact electrification (CE), and electrostatic discharge (ESD). By considering two phases of motion during contact-separation (approach and departure of the contact materials), CI arising from the motion of bound surface charge (varying electric field) between opposing contact materials is shown to dominate the measured displacement current signal, rather than the process of CE itself. Furthermore, the conventional signal (i. e., voltage, current, charge) interpretation of CE and CI during approach and departure phases is re-assessed, to indicate that the sudden spike of current often observed immediately prior to contact (or after separation) arises from polarity inverting electrostatic discharge (ESD). This aspect of the measured triboelectric effect, which is often ignored, is crucial for the design of TENGs and hence, techniques to enhance the understanding and control over the stochastic occurrence of ESDs is explored. The methods proposed for the deconvolution of the macroscopic signal components of TENGs, and mitigation of ESD occurrences, will allow for precise quantification of the associated charging events. The applications of this study will template the design and development of future super-TENGs with optimised energy conversion capabilities.

5.
Otol Neurotol ; 45(3): 204-214, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260952

RESUMEN

OBJECTIVE: To conduct a systematic review of the existing literature with the aim of evaluating and consolidating the present understanding of strategies for mitigating magnetic resonance imaging (MRI) artifacts related to cochlear implants in adult and pediatric patients, covering both in-vivo and ex-vivo investigations. DATA SOURCES: A systematic review of MEDLINE-Ovid, Embase, Google Scholar, The Cochrane Library, and Scopus was performed from inception through April 2022. The protocol was registered with PROSPERO before commencement of data collection (CRD CRD42022319651). REVIEW METHODS: The data were screened and collected by two authors independently, and eligibility was assessed according to Cochrane Handbook and Preferred Reporting Items for Systematic Review and Meta-Analysis recommendations, whereas the quality of the articles was evaluated using the NIH Study Quality Assessment. RESULTS: The search yielded 2,354 potentially relevant articles, of which 27 studies were included in the final review. Twelve studies looked at 1.5-T MRI, four studies looked at 3-T MRI, eight studies looked at both 1.5 and 3 T, one study looked at 0.2 and 1.5 T, and one study looked at 3- and 7.0-T MRI. Nineteen studies focused on MRI sequences as a means of artifact reduction, nine studies focused on implant magnet positioning, two studies focused on head positioning, and one study focused on both magnet and head positioning. In terms of MRI sequences, diffusion-weighted imaging produced larger artifacts compared with other sequences, whereas fast spin echo/turbo spin echo sequences and fat suppression techniques produced smaller artifacts. The position of the magnet was also found to be important, with a magnet position more than 6.5 cm posterior to the external auditory canal producing the best images with the least distortion. The angle at which the magnet is placed also affects visibility of different brain structures. CONCLUSION: Proper head positioning, magnet placement at a distance of over 6.5 cm from the external auditory canal, use of spin echo sequences, and fat suppression techniques reduce the size and shape of MRI artifacts.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Humanos , Niño , Artefactos , Implantación Coclear/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética
6.
Adv Mater ; 36(3): e2308819, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37832157

RESUMEN

The combined effects of compact TiO2 (c-TiO2 ) electron-transport layer (ETL) are investigated without and with mesoscopic TiO2 (m-TiO2 ) on top, and without and with an iodine-terminated silane self-assembled monolayer (SAM), on the mechanical behavior, opto-electronic properties, photovoltaic (PV) performance, and operational-stability of solar cells based on metal-halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c-TiO2 without SAM to m-TiO2 with SAM. This is attributed to the synergistic effect of the m-TiO2 /MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine-terminated silane SAM. The combination of m-TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power-conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational-stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational-stability-tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational-stability.

7.
J Colloid Interface Sci ; 657: 25-36, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38029526

RESUMEN

HYPOTHESIS: Interactions across incredibly thin layers of fluids, known as thin films, underpin many important processes involving colloids, such as wetting-dewetting phenomena. Often in these systems, thin films are composed of complex fluids that contain dispersed components, such as spherical micelles, giving rise to oscillatory structural forces due to preferential layering under confinement. Modelling of thin film dynamics involving Derjaguin-Landau-Verwey-Overbeek (DLVO) type forces has been widely reported using the Stokes-Reynolds-Young-Laplace (SRYL) model, and we hypothesize that this theory can be extended to a concentrated micellar system by including an oscillatory structural force term in the disjoining pressure. EXPERIMENTS: We study the drainage behaviour of thin films comprising sodium dodecyl sulfate (SDS) micelles across a range of concentrations and interaction conditions between an air bubble and a mica disk using a custom-built dual-wave interferometry apparatus. FINDINGS: Early-stage film behaviour is dominated by hydrodynamics, which can be well reproduced by the SRYL model. However, experimental profiles drain significantly faster than predicted, transitioning into a structural force dominated phase characterised by four types of film ripping instabilities that we term 'waving', 'ridging', 'webbing', and 'hole-sheeting'. These instabilities were mapped according to SDS concentration and approach velocity, providing insight into the interplay between structural forces and hydrodynamic conditions.

8.
Proc Natl Acad Sci U S A ; 120(49): e2306507120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37983483

RESUMEN

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality-reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period-we estimate a potential of 41 to 50 Mt net additional annual CO2 uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.


Asunto(s)
Ecosistema , Aerosoles y Gotitas Respiratorias , Humanos , Aerosoles/análisis , Clorofila/análisis , Polvo/análisis , Fluorescencia , Fotosíntesis
9.
J Phys Chem B ; 127(46): 9976-9984, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37941350

RESUMEN

The homogeneous nucleation of N2 and O2 in cryogenic H2 and He is investigated by using classical molecular dynamics (MD) simulations. The nucleation kinetics of N2 and O2 clusters, including nucleation rate, critical cluster size, and cluster energy, are elucidated in H2 and He carrier gas at thermalization temperatures of 30-80 K and initial gas densities of 5.65 × 1024-2 × 1027 m-3. The energy released from the clusters during nucleation increases the system temperature by 77-138%, consistent with N2 nucleation experiments in supersonic nozzles and the mean-field kinetic nucleation theory. The nucleation rate derived by MD, Jsim, spans across 2.14 × 1029-5.25 × 1036 m-3 s-1 for both N2 and O2 under all conditions. The MD-obtained homogeneous nucleation rate is in agreement with predictions from the self-consistent classical nucleation theory (CNT) at low temperature (<70 K) but is 3-7 orders of magnitude faster than the CNT when temperature exceeds 70 K, consistent with the literature. Increasing temperature and decreasing concentration of the nucleating vapors leads to larger critical cluster sizes. The CNT underpredicts the critical cluster size at cryogenic temperatures below 60 K by 200-700%. The present MD methodology can be used for the direct determination of the nucleation rate and critical cluster size of N2 and O2 under cryogenic conditions, circumventing the assumptions inherent in CNT.

10.
Nature ; 623(7986): 313-318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696288

RESUMEN

Metal halide perovskite solar cells (PSCs) represent a promising low-cost thin-film photovoltaic technology, with unprecedented power conversion efficiencies obtained for both single-junction and tandem applications1-8. To push PSCs towards commercialization, it is critical, albeit challenging, to understand device reliability under real-world outdoor conditions where multiple stress factors (for example, light, heat and humidity) coexist, generating complicated degradation behaviours9-13. To quickly guide PSC development, it is necessary to identify accelerated indoor testing protocols that can correlate specific stressors with observed degradation modes in fielded devices. Here we use a state-of-the-art positive-intrinsic-negative (p-i-n) PSC stack (with power conversion efficiencies of up to approximately 25.5%) to show that indoor accelerated stability tests can predict our six-month outdoor ageing tests. Device degradation rates under illumination and at elevated temperatures are most instructive for understanding outdoor device reliability. We also find that the indium tin oxide/self-assembled monolayer-based hole transport layer/perovskite interface most strongly affects our device operation stability. Improving the ion-blocking properties of the self-assembled monolayer hole transport layer increases averaged device operational stability at 50 °C-85 °C by a factor of about 2.8, reaching over 1,000 h at 85 °C and to near 8,200 h at 50 °C, with a projected 20% degradation, which is among the best to date for high-efficiency p-i-n PSCs14-17.

11.
Nat Ecol Evol ; 7(11): 1790-1798, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710041

RESUMEN

Vegetation 'greenness' characterized by spectral vegetation indices (VIs) is an integrative measure of vegetation leaf abundance, biochemical properties and pigment composition. Surprisingly, satellite observations reveal that several major VIs over the US Corn Belt are higher than those over the Amazon rainforest, despite the forests having a greater leaf area. This contradicting pattern underscores the pressing need to understand the underlying drivers and their impacts to prevent misinterpretations. Here we show that macroscale shadows cast by complex forest structures result in lower greenness measures compared with those cast by structurally simple and homogeneous crops. The shadow-induced contradictory pattern of VIs is inevitable because most Earth-observing satellites do not view the Earth in the solar direction and thus view shadows due to the sun-sensor geometry. The shadow impacts have important implications for the interpretation of VIs and solar-induced chlorophyll fluorescence as measures of global vegetation changes. For instance, a land-conversion process from forests to crops over the Amazon shows notable increases in VIs despite a decrease in leaf area. Our findings highlight the importance of considering shadow impacts to accurately interpret remotely sensed VIs and solar-induced chlorophyll fluorescence for assessing global vegetation and its changes.


Asunto(s)
Bosques , Bosque Lluvioso , Estaciones del Año , Sesgo , Clorofila
12.
ACS Appl Mater Interfaces ; 15(30): 36856-36865, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37474250

RESUMEN

Moving toward a future of efficient, accessible, and less carbon-reliant energy devices has been at the forefront of energy research innovations for the past 30 years. Metal-halide perovskite (MHP) thin films have gained significant attention due to their flexibility of device applications and tunable capabilities for improving power conversion efficiency. Serving as a gateway to optimize device performance, consideration must be given to chemical synthesis processing techniques. Therefore, how does common substrate processing techniques influence the behavior of MHP phenomena such as ion migration and strain? Here, we demonstrate how a hybrid approach of chemical bath deposition (CBD) and nanoparticle SnO2 substrate processing significantly improves the performance of (FAPbI3)0.97(MAPbBr3)0.03 by reducing micro-strain in the SnO2 lattice, allowing distribution of K+ from K-Cl treatment of substrates to passivate defects formed at the interface and produce higher current in light and dark environments. X-ray diffraction reveals differences in lattice strain behavior with respect to SnO2 substrate processing methods. Through use of conductive atomic force microscopy (c-AFM), conductivity is measured spatially with MHP morphology, showing higher generation of current in both light and dark conditions for films with hybrid processing. Additionally, time-of-flight secondary ionization mass spectrometry (ToF-SIMS) observed the distribution of K+ at the perovskite/SnO2 interface, indicating K+ passivation of defects to improve the power conversion efficiency (PCE) and device stability. We show how understanding the role of ion distribution at the SnO2 and perovskite interface can help reduce the creating of defects and promote a more efficient MHP device.

13.
J Am Chem Soc ; 145(21): 11846-11858, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37202123

RESUMEN

Metal halide perovskites are promising for optoelectronic device applications; however, their poor stability under solar illumination remains a primary concern. While the intrinsic photostability of isolated neat perovskite samples has been widely discussed, it is important to explore how charge transport layers─employed in most devices─impact photostability. Herein, we study the effect of organic hole transport layers (HTLs) on light-induced halide segregation and photoluminescence (PL) quenching at perovskite/organic HTL interfaces. By employing a series of organic HTLs, we demonstrate that the HTL's highest occupied molecular orbital energy dictates behavior; furthermore, we reveal the key role of halogen loss from the perovskite and subsequent permeation into organic HTLs, where it acts as a PL quencher at the interface and introduces additional mass transport pathways to facilitate halide phase separation. In doing so, we both reveal the microscopic mechanism of non-radiative recombination at perovskite/organic HTL interfaces and detail the chemical rationale for closely matching the perovskite/organic HTL energetics to maximize solar cell efficiency and stability.

14.
Adv Mater ; 35(29): e2302206, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37052234

RESUMEN

Metal halide perovskites are an attractive class of semiconductors, but it has proven difficult to control their electronic doping by conventional strategies due to screening and compensation by mobile ions or ionic defects. Noble-metal interstitials represent an under-studied class of extrinsic defects that plausibly influence many perovskite-based devices. In this work, doping of metal halide perovskites is studied by electrochemically formed Au+ interstitial ions, combining experimental data on devices with a computational analysis of Au+ interstitial defects based on density functional theory (DFT). Analysis suggests that Au+ cations can be easily formed and migrate through the perovskite bulk via the same sites as iodine interstitials (Ii + ). However, whereas Ii + compensates n-type doping by electron capture, the noble-metal interstitials act as quasi-stable n-dopants. Experimentally, voltage-dependent, dynamic doping by current density-time (J-t), electrochemical impedance, and photoluminescence measurements are characterized. These results provide deeper insight into the potential beneficial and detrimental impacts of metal electrode reactions on long-term performance of perovskite photovoltaic and light-emitting diodes, as well as offer an alternative doping explanation for the valence switching mechanism of halide-perovskite-based neuromorphic and memristive devices.

15.
ACS Appl Mater Interfaces ; 15(12): 15290-15297, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36940415

RESUMEN

Halide perovskite solar cells (PSCs) represent a low-cost and high-efficiency solar technology. However, most of the highly efficient PSCs need a noble electrode, such as Au, through thermal evaporation. It is reported that a sputtered Au electrode on a PSC could damage the organic hole transport layer (HTL) and the perovskite layer. Here, we report a simple, yet effective sputtered gold nanoparticle decorated carbon electrode to fabricate efficient and stable planar PSCs. The sputtered Au layer on the doctor-bladed coated carbon electrode can be directly applied to the perovskite semicells by mechanical stacking. By optimizing the gold thickness, a power conversion efficiency (PCE) of 16.87% was obtained for the composite electrode-based PSC, while the reference device recorded a PCE of 12.38%. The composite electrode-based device demonstrated 96% performance retention after being stored under humid conditions (50-60%) without encapsulation for ∼100 h. This demonstrates a promising pathway toward the commercialization of large-scale manufacturable sputtered electrodes for the PSC solar module.

16.
Int J Pediatr Otorhinolaryngol ; 164: 111419, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525697

RESUMEN

OBJECTIVES: Assessing the prognostic utility of lymph node status in pediatric rhabdomyosarcoma (RMS) patients and identifying demographic and clinical predictors of positive lymph node status among pediatric rhabdomyosarcoma patients. STUDY DESIGN: Retrospective cohort study of head and neck RMS in patients with and without positive lymph node metastasis. METHODS: National Cancer Database (NCDB) was queried for patients of young (0-11 years) and adolescent (12-21 years) ages with head and neck RMS and confirmed positive or negative lymph node metastasis status. Descriptive analyses, Kaplan-Meier survival analyses, and multivariate logistic regressions were performed on extracted demographic and clinical characteristics. RESULTS: Among 272 head and neck RMS patients, 146 (54%) were found to have positive lymph node metastasis. Alveolar RMS (n = 147, 54%) followed by embryonal RMS (n = 74, 27%) were the most represented histology types. Positive lymph node metastasis conferred significantly decreased survivability (p < 0.001) with a median survival period of 36.42 months compared to negative lymph node metastasis with a period of 53.47 months. Older age showed markedly increased odds (OR-2.02; 95%CI 1.22-3.38) of having lymph node metastasis when controlling for sex, race, insurance status, and Charlson-Comorbidity score. Alveolar histologies showed markedly increased odds of having lymph node metastasis (OR-3.21; 95%CI 1.96-5.31); embryonal histologies showed markedly decreased odds of having lymph node metastasis (OR-0.32; 95%CI 0.18-0.56) CONCLUSIONS: This study highlights the significant prognostic value of lymph node status among pediatric head and neck rhabdomyosarcoma patients while showcasing crucial demographic and pathological predictors of lymph node metastasis in said patients. Use of lymph node status in pediatric head and neck rhabdomyosarcoma will present future steps towards improving its clinical course.


Asunto(s)
Neoplasias de Cabeza y Cuello , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Niño , Adolescente , Humanos , Estudios Retrospectivos , Metástasis Linfática/patología , Pronóstico , Ganglios Linfáticos/patología , Rabdomiosarcoma/terapia , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/patología
17.
Nat Mater ; 22(1): 73-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456873

RESUMEN

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Asunto(s)
Amidinas , Luz Solar , Cationes , Dimetilsulfóxido
18.
Photosynth Res ; 155(1): 107-125, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36302911

RESUMEN

We provide here an overview of the remarkable life and outstanding research of David (Dave) Charles Fork (March 4, 1929-December 13, 2021) in oxygenic photosynthesis. In the words of the late Jack Edgar Myers, he was a top 'photosynthetiker'. His research dealt with novel findings on light absorption, excitation energy distribution, and redistribution among the two photosystems, electron transfer, and their relation to dynamic membrane change as affected by environmental changes, especially temperature. David was an attentive listener and a creative designer of experiments and instruments, and he was also great fun to work with. He is remembered here by his family, coworkers, and friends from around the world including Australia, France, Germany, Japan, Sweden, Israel, and USA.


Asunto(s)
Oxígeno , Fotosíntesis , Humanos , Australia , Transporte de Electrón , Alemania
19.
Science ; 378(6626): 1295-1300, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36548423

RESUMEN

The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br-I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br-I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75-electron volt Br-I mixed WBG perovskite films with reduced defect density. With this approach, we obtained 1.75-electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65°C). When further integrated with 1.25-electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.

20.
Nature ; 611(7935): 278-283, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049505

RESUMEN

Perovskite solar cells (PSCs) with an inverted structure (often referred to as the p-i-n architecture) are attractive for future commercialization owing to their easily scalable fabrication, reliable operation and compatibility with a wide range of perovskite-based tandem device architectures1,2. However, the power conversion efficiency (PCE) of p-i-n PSCs falls behind that of n-i-p (or normal) structure counterparts3-6. This large performance gap could undermine efforts to adopt p-i-n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit7,8. Here we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface formamidinium ions, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps and terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p-i-n PSCs obtained a PCE of over 25 per cent, along with retaining 87 per cent of the initial PCE after over 2,400 hours of 1-sun operation at about 55 degrees Celsius in air.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA