Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Nat Commun ; 15(1): 6202, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080262

RESUMEN

Images collected during NASA's Double Asteroid Redirection Test (DART) mission provide the first resolved views of the Didymos binary asteroid system. These images reveal that the primary asteroid, Didymos, is flattened and has plausible undulations along its equatorial perimeter. At high elevations, its surface is rough and contains large boulders and craters; at low elevations its surface is smooth and possesses fewer large boulders and craters. Didymos' moon, Dimorphos, possesses an intimate mixture of boulders, several asteroid-wide lineaments, and a handful of craters. The surfaces of both asteroids include boulders that are large relative to their host body, suggesting that both asteroids are rubble piles. Based on these observations, our models indicate that Didymos has a surface cohesion ≤ 1 Pa and an interior cohesion of ∼10 Pa, while Dimorphos has a surface cohesion of <0.9 Pa. Crater size-frequency analyzes indicate the surface age of Didymos is 40-130 times older than Dimorphos, with likely absolute ages of ~ 12.5 Myr and <0.3 Myr, respectively. Solar radiation could have increased Didymos' spin rate leading to internal deformation and surface mass shedding, which likely created Dimorphos.

2.
Nature ; 616(7957): 457-460, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858075

RESUMEN

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

3.
Nature ; 526(7573): 402-5, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26416730

RESUMEN

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

4.
Nature ; 523(7558): 63-6, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26135448

RESUMEN

Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

5.
Science ; 347(6220): aaa0440, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613893

RESUMEN

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

6.
Science ; 347(6220): aaa1044, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613897

RESUMEN

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

7.
Science ; 347(6220): aaa3905, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613898

RESUMEN

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

8.
J Phys Chem B ; 118(11): 2957-65, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24460530

RESUMEN

Protein sedimentation sans cryoprotection is a new approach to magic angle spinning (MAS) and dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) spectroscopy of proteins. It increases the sensitivity of the experiments by a factor of ∼4.5 in comparison to the conventional DNP sample preparation and circumvents intense background signals from the cryoprotectant. In this paper, we investigate sedimented samples and concentrated frozen solutions of natural abundance bovine serum albumin (BSA) in the absence of a glycerol-based cryoprotectant. We observe DNP signal enhancements of ε ∼ 66 at 140 GHz in a BSA pellet sedimented from an aqueous solution containing the biradical polarizing agent TOTAPOL and compare this with samples prepared using the conventional protocol (i.e., dissolution of BSA in a glycerol/water cryoprotecting mixture). The dependence of DNP parameters on the radical concentration points to the presence of an interaction between TOTAPOL and BSA, so much so that a frozen solution sans cryoprotectant still gives ε ∼ 50. We have studied the interaction of BSA with another biradical, SPIROPOL, that is more rigid than TOTAPOL and has been reported to give higher enhancements. SPIROPOL was also found to interact with BSA, and to give ε ∼ 26 close to its maximum achievable concentration. Under the same conditions, TOTAPOL gives ε ∼ 31, suggesting a lesser affinity of BSA for SPIROPOL with respect to TOTAPOL. Altogether, these results demonstrate that DNP is feasible in self-cryoprotecting samples.


Asunto(s)
Espectroscopía de Resonancia Magnética , Albúmina Sérica Bovina/química , Animales , Bovinos , Óxidos N-Cíclicos/química , Propanoles/química , Soluciones
10.
Acc Chem Res ; 46(9): 1912-3, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24041241
11.
Chembiochem ; 14(14): 1891-7, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23821412

RESUMEN

The accumulation of soluble toxic beta-amyloid (Aß) aggregates is an attractive hypothesis for the role of this peptide in the pathology of Alzheimer's disease. We have introduced sedimentation through ultracentrifugation, either by magic angle spinning (in situ) or preparative ultracentrifuge (ex situ), to immobilize biomolecules and make them amenable for solid-state NMR studies (SedNMR). In situ SedNMR is used here to address the kinetics of formation of soluble Aß assemblies by monitoring the disappearance of the monomer and the appearance of the oligomers simultaneously. Ex situ SedNMR allows us to select different oligomeric species and to reveal atomic-level structural features of soluble Aß assemblies.


Asunto(s)
Péptidos beta-Amiloides/química , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Cinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Secundaria de Proteína , Soluciones/química , Temperatura , Ultracentrifugación
12.
Met Ions Life Sci ; 12: 1-13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23595668

RESUMEN

In this chapter we aim at underlining the complexity of the interactions between living systems and inorganic elements. Attempts are made to move this field towards an "omics" approach through bioinfomatics and information technology. The metallome can be defined as the ensemble of all the biomolecules in a system which bind a given metal ion or an inorganic element at broad, or are affected by that element. A number of subsets of a metallome can then be defined based on the nature of the biomolecules interacting with the metal ions and the inorganic elements in general. The most relevant and most studied subset is the metalloproteome. This field now needs to be framed in a cellular context. The interlinks and connections among the various pathways and processes involving metal ions in the cell have to be described in an integrated way so to reach a systems biology vision.


Asunto(s)
Metales
13.
Proc Natl Acad Sci U S A ; 110(18): 7136-41, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23596212

RESUMEN

Biogenesis of iron-sulfur cluster proteins is a highly regulated process that requires complex protein machineries. In the cytosolic iron-sulfur protein assembly machinery, two human key proteins--NADPH-dependent diflavin oxidoreductase 1 (Ndor1) and anamorsin--form a stable complex in vivo that was proposed to provide electrons for assembling cytosolic iron-sulfur cluster proteins. The Ndor1-anamorsin interaction was also suggested to be implicated in the regulation of cell survival/death mechanisms. In the present work we unravel the molecular basis of recognition between Ndor1 and anamorsin and of the electron transfer process. This is based on the structural characterization of the two partner proteins, the investigation of the electron transfer process, and the identification of those protein regions involved in complex formation and those involved in electron transfer. We found that an unstructured region of anamorsin is essential for the formation of a specific and stable protein complex with Ndor1, whereas the C-terminal region of anamorsin, containing the [2Fe-2S] redox center, transiently interacts through complementary charged residues with the FMN-binding site region of Ndor1 to perform electron transfer. Our results propose a molecular model of the electron transfer process that is crucial for understanding the functional role of this interaction in human cells.


Asunto(s)
Flavoproteínas/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Proteínas Hierro-Azufre/biosíntesis , Oxidorreductasas/biosíntesis , Biosíntesis de Proteínas , Transporte de Electrón , Mononucleótido de Flavina/metabolismo , Flavoproteínas/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Hierro-Azufre/química , Modelos Biológicos , Modelos Moleculares , Oxidorreductasas/química , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína
14.
Nat Chem Biol ; 9(5): 297-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455544

RESUMEN

We use NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1 oxidizes the SOD1 intrasubunit disulfide bond through both copper-dependent and copper-independent mechanisms. Our approach represents a new strategy for structural investigation of endogenously expressed proteins in a physiological (cellular) environment.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Procesamiento Proteico-Postraduccional , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Supervivencia Celular , Cobre/química , Cobre/metabolismo , Células HEK293 , Humanos , Oxidación-Reducción , Conformación Proteica , Superóxido Dismutasa-1 , Zinc/química , Zinc/metabolismo
15.
Acc Chem Res ; 46(9): 2059-69, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23470055

RESUMEN

Solid-state NMR (SS-NMR) of proteins requires that those molecules be immobilized, usually by crystallization, freezing, or lyophilization. However, self-crowding can also slow molecular rotation sufficiently to prevent the nuclear interactions from averaging. To achieve self-crowding, researchers can use a centrifugal field to create a concentration gradient or use regular ultracentrifugation to produce highly concentrated, gel-like solutions. Thus sedimented solute NMR (SedNMR) provides a simple method to prepare biological samples for SS-NMR experiments with minimal perturbation. This method may also give researchers a way to investigate species that are not otherwise accessible by NMR. We induce the sedimentation in one of two ways: (1) by the extreme centrifugal force exerted during magic angle spinning (MAS-induced sedimentation or in situ) or (2) by an ultracentrifuge (UC-induced sedimentation or ex situ). Sedimentation is particularly useful in situations where it is difficult to obtain protein crystals. Furthermore, because the proteins remain in a largely hydrated state, the sedimented samples may provide SS-NMR spectra that have better resolution than the spectra from frozen solutions or lyophilized powders. If sedimentation is induced in situ, the same protein sample can be used for both solution and SS-NMR studies. Finally, we show that in situ SedNMR can be used to detect the NMR signals of large molecular adducts that have binding constants that are too weak to allow for the selective isolation and crystallization of the complexed species. We can selectively induce sedimentation for the heaviest molecular species. Because the complexed molecules are subtracted from the bulk solution, the reaction proceeds further toward the formation of complexes.

16.
J Am Chem Soc ; 135(5): 1641-4, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23331059

RESUMEN

Using the 480 kDa iron-storage protein complex, apoferritin (ApoF), as an example, we demonstrate that sizable dynamic nuclear polarization (DNP) enhancements can be obtained on sedimented protein samples. In sedimented solute DNP (SedDNP), the biradical polarizing agent is co-sedimented with the protein, but in the absence of a glass-forming agent. We observe DNP enhancement factors ε > 40 at a magnetic field of 5 T and temperatures below 90 K, indicating that the protein sediment state is "glassy" and suitable to disperse the biradical polarizing agent upon freezing. In contrast, frozen aqueous solutions of ApoF yield ε ≈ 2. Results of SedDNP are compared to those obtained from samples prepared using the traditional glass-forming agent glycerol. Collectively, these and results from previous investigations suggest that the sedimented state can be functionally described as a "microcrystalline glass" and in addition provide a new approach for preparation of samples for DNP experiments.


Asunto(s)
Apoferritinas/química , Resonancia Magnética Nuclear Biomolecular , Campos Magnéticos , Soluciones , Temperatura
18.
J Biol Inorg Chem ; 18(2): 183-194, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23197251

RESUMEN

Human S100A14 is a member of the EF-hand calcium-binding protein family that has only recently been described in terms of its functional and pathological properties. The protein is overexpressed in a variety of tumor cells and it has been shown to trigger receptor for advanced glycation end products (RAGE)-dependent signaling in cell cultures. The solution structure of homodimeric S100A14 in the apo state has been solved at physiological temperature. It is shown that the protein does not bind calcium(II) ions and exhibits a "semi-open" conformation that thus represents the physiological structure of the S100A14. The lack of two ligands in the canonical EF-hand calcium(II)-binding site explains the negligible affinity for calcium(II) in solution, and the exposed cysteines and histidine account for the observed precipitation in the presence of zinc(II) or copper(II) ions.


Asunto(s)
Apoproteínas/química , Proteínas de Unión al Calcio/química , Sitios de Unión , Calcio/química , Cobre/química , Humanos , Luz , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Propiedades de Superficie , Zinc/química
19.
J Mol Biol ; 425(3): 594-608, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23207295

RESUMEN

The functional role of unstructured protein domains is an emerging field in the frame of intrinsically disordered proteins. The involvement of intrinsically disordered domains (IDDs) in protein targeting and biogenesis processes in mitochondria is so far not known. Here, we have characterized the structural/dynamic and functional properties of an IDD of the sulfhydryl oxidase ALR (augmenter of liver regeneration) located in the intermembrane space of mitochondria. At variance to the unfolded-to-folded structural transition of several intrinsically disordered proteins, neither substrate recognition events nor redox switch of its shuttle cysteine pair is linked to any such structural change. However, this unstructured domain performs a dual function in two cellular compartments: it acts (i) as a mitochondrial targeting signal in the cytosol and (ii) as a crucial recognition site in the disulfide relay system of intermembrane space. This domain provides an exciting new paradigm for IDDs ensuring two distinct functions that are linked to intracellular organelle targeting.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Conformación Proteica , Saccharomyces cerevisiae/enzimología
20.
Chembiochem ; 13(16): 2425-32, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23060071

RESUMEN

Carbon-13 direct-detection NMR methods have proved to be very useful for the characterization of intrinsically disordered proteins (IDPs). Here we present a suite of experiments in which amino-acid-selective editing blocks are encoded in CACON- and CANCO-type sequences to give (13) C-detected spectra containing correlations arising from a particular type or group of amino acid(s). These two general types of experiments provide the complementary intra- and inter-residue correlations necessary for sequence-specific assignment of backbone resonance frequencies. We demonstrate the capabilities of these experiments on two IDPs: fully reduced Cox17 and WIP(C) . The proposed approach constitutes an independent strategy to simplify crowded spectra as well as to perform sequence-specific assignment, thereby demonstrating its potential to study IDPs.


Asunto(s)
Aminoácidos/análisis , Proteínas/química , Isótopos de Carbono , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA