RESUMEN
Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.
Asunto(s)
Butanoles , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Butanoles/metabolismo , Fermentación , Etanol/metabolismo , Etanol/farmacología , 1-Butanol/metabolismo , Rayos Ultravioleta , Adaptación FisiológicaRESUMEN
Peanut-based products have been associated with Salmonella foodborne outbreaks and/or recalls worldwide. The ability of Salmonella to persist for a long time in a low moisture environment can contribute to this kind of contamination. The objective of this study was to analyse the genome of five S. enterica enterica strains isolated from the peanut supply chain in Brazil, as well as to identify genetic determinants for survival under desiccation and validate these findings by phenotypic test of desiccation stress. The strains were in silico serotyped using the platform SeqSero2 as Miami (M2851), Javiana (M2973), Oranienburg (M2976), Muenster (M624), and Glostrup/Chomedey (M7864); with phylogenomic analysis support. Based on Multilocus Sequence Typing (MLST) the strains were assigned to STs 140, 1674, 321, 174, and 2519. In addition, eight pathogenicity islands were found in all the genomes using the SPIFinder 2.0 (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, SPI-13, SPI-14). The absence of a SPI-4 may indicate a loss of this island in the surveyed genomes. For the pangenomic analysis, 49 S. enterica genomes were input into the Roary pipeline. The majority of the stress related genes were considered as soft-core genes and were located on the chromosome. A desiccation stress phenotypic test was performed in trypticase soy broth (TSB) with four different water activity (aw) values. M2976 and M7864, both isolated from the peanut samples with the lowest aw, showed the highest OD570nm in TSB aw 0.964 and were statistically different (p < 0.05) from the strain isolated from the peanut sample with the highest aw (0.997). In conclusion, genome analyses have revealed signatures of desiccation adaptation in Salmonella strains, but phenotypic analyses suggested the environment influences the adaptive ability of Salmonella to overcome desiccation stress.
Asunto(s)
Arachis , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Filogenia , Salmonella enterica , Arachis/microbiología , Brasil , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Salmonella enterica/clasificación , Microbiología de Alimentos , Islas Genómicas , Desecación , GenómicaRESUMEN
The current study investigated the fungal diversity in freshly harvested oat samples from the two largest production regions in Brazil, Paraná (PR) and Rio Grande do Sul (RS), focusing primarily on the Fusarium genus and the presence of type B trichothecenes. The majority of the isolates belonged to the Fusarium sambucinum species complex, and were identified as F. graminearum sensu stricto (s.s.), F. meridionale, and F. poae. In the RS region, F. poae was the most frequent fungus, while F. graminearum s.s. was the most frequent in the PR region. The F. graminearum s.s. isolates were 15-ADON genotype, while F. meridionale and F. poae were NIV genotype. Mycotoxin analysis revealed that 92% and 100% of the samples from PR and RS were contaminated with type B trichothecenes, respectively. Oat grains from PR were predominantly contaminated with DON, whereas NIV was predominant in oats from RS. Twenty-four percent of the samples were contaminated with DON at levels higher than Brazilian regulations. Co-contamination of DON, its derivatives, and NIV was observed in 84% and 57.7% of the samples from PR and RS, respectively. The results provide new information on Fusarium contamination in Brazilian oats, highlighting the importance of further studies on mycotoxins.
Asunto(s)
Avena/química , Avena/microbiología , Fusarium/aislamiento & purificación , Tricotecenos Tipo B/análisis , Brasil , Grano Comestible/química , Grano Comestible/microbiología , Contaminación de Alimentos/análisis , Fusarium/clasificación , Fusarium/genética , Micotoxinas/análisis , Tricotecenos/análisisRESUMEN
Early prediction of COVID-19 in-hospital mortality relies usually on patients' preexisting comorbidities and is rarely reproducible in independent cohorts. We wanted to compare the role of routinely measured biomarkers of immunity, inflammation, and cellular damage with preexisting comorbidities in eight different machine-learning models to predict mortality, and evaluate their performance in an independent population. We recruited and followed-up consecutive adult patients with SARS-Cov-2 infection in two different Italian hospitals. We predicted 60-day mortality in one cohort (development dataset, n = 299 patients, of which 80% was allocated to the development dataset and 20% to the training set) and retested the models in the second cohort (external validation dataset, n = 402). Demographic, clinical, and laboratory features at admission, treatments and disease outcomes were significantly different between the two cohorts. Notably, significant differences were observed for %lymphocytes (p < 0.05), international-normalized-ratio (p < 0.01), platelets, alanine-aminotransferase, creatinine (all p < 0.001). The primary outcome (60-day mortality) was 29.10% (n = 87) in the development dataset, and 39.55% (n = 159) in the external validation dataset. The performance of the 8 tested models on the external validation dataset were similar to that of the holdout test dataset, indicating that the models capture the key predictors of mortality. The shap analysis in both datasets showed that age, immune features (%lymphocytes, platelets) and LDH substantially impacted on all models' predictions, while creatinine and CRP varied among the different models. The model with the better performance was model 8 (60-day mortality AUROC 0.83 ± 0.06 in holdout test set, 0.79 ± 0.02 in external validation dataset). The features that had the greatest impact on this model's prediction were age, LDH, platelets, and %lymphocytes, more than comorbidities or inflammation markers, and these findings were highly consistent in both datasets, likely reflecting the virus effect at the very beginning of the disease.
RESUMEN
OBJECTIVE: The availability of public health information for optimised supportive care is critical during the COVID-19 pandemic. We describe the first case of COVID-19 complicated by Takotsubo cardiomyopathy. MATERIALS AND METHODS: We report the clinical, laboratory and radiological findings of a patient with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The nasopharyngeal swab was positive for SARS-CoV-2 and x-ray images demonstrated pathognomonic pneumonia. The patient developed tachycardia and the echocardiogram confirmed the diagnosis of Takotsubo cardiomyopathy. CONCLUSIONS: Doctors should be aware of the need to thoroughly study this new infection in order to understand its underlying mechanisms and related complications. LEARNING POINTS: We report the first case of Takotsubo cardiomyopathy associated with COVID-19.We discuss a rare presentation in the current pandemic.COVID-19 can be associated with cardiac complications, even after the onset of pneumonia, and so strict monitoring of these patients is essential.