Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
2.
Future Sci OA ; 10(1): 2381956, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39135497

RESUMEN

Aim: To describe advances in 3D data capture and printing that allow photorealistic replicas of human anatomical specimens for education and research, and discuss advantages of current generation printing for replica design and manufacture. Materials & methods: We combine surface scanning and computerized tomography datasets that maximize precise color and geometric capture with ultra violet (UV) curable resin printing to replicate human anatomical specimens. Results: We describe the process for color control, print design and translation of photorealistic 3D meshes into 3D prints in durable resins. Conclusion: Current technologies allow previously unachievable ability to capture and reproduce anatomical specimens, and provide a platform for a new generation of 3D printed teaching materials to be designed and used in anatomy education environments.


The teaching of human anatomy has undergone significant change in the last 30­40 years, especially in respect to the technologies available to augment or replace traditional teaching using dissection of human bodies. This has included plastic models, software teaching packages, digital visualization tables and virtual/augmented reality. Our group initially developed a range of 3D printed replicas (Series 1) of human anatomy dissections. Our method involved computed tomography scanning a dissected specimen to capture the geometry and then digitally coloring the model with a standardized color palette to 'false color' the resulting 3D prints (e.g., yellow for nerves and red for arteries). This present report details how advances in full-color, high-resolution surface scanning can create a true colored photorealistic model of preserved human anatomical specimens. When these surface scanned models are 3D printed with the current generation of UV curable resin-based printers, it is possible to achieve photographic quality replicas comparable to the original anatomy specimens. This new generation of 3D printed replicas resembling traditional anatomy specimens (Series 1.1), while simultaneously still allowing color augmentation to further enhance their educational value. These replicas have an advantage over plastinated cadaver specimens as they can be utilized in any teaching environment such as peripheral or rural medical school locations, teaching hospitals and clinical environments.

3.
Kidney Int ; 106(3): 496-507, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39046396

RESUMEN

Glomerulomegaly and focal segmental glomerulosclerosis are histopathological hallmarks of obesity-related glomerulopathy (ORG). Podocyte injury and subsequent depletion are regarded as key processes in the development of these glomerular lesions in patients with ORG, but their impact on long-term kidney outcome is undetermined. Here, we correlated clinicopathological findings and podocyte depletion retrospectively in patients with ORG. Relative (podocyte density) and absolute (podocyte number per glomerulus) measures of podocyte depletion were estimated using model-based stereology in 46 patients with ORG. The combined endpoint of kidney outcomes was defined as a 30% decline in estimated glomerular filtration rate (eGFR) or kidney failure. Patients with lower podocyte density were predominantly male and had larger body surface area, greater proteinuria, fewer non-sclerotic glomeruli, larger glomeruli and higher single-nephron eGFR. During a median follow-up of 4.1 years, 18 (39%) patients reached endpoint. Kidney survival in patients with lower podocyte density was significantly worse than in patients with higher podocyte density. However, there was no difference in kidney survival between patient groups based on podocyte number per glomerulus. Cox hazard analysis showed that podocyte density, but not podocyte number per glomerulus, was associated with the kidney outcomes after adjustment for clinicopathological confounders. Thus, our study demonstrates that a relative depletion of podocytes better predicts long-term kidney outcomes than does absolute depletion of podocytes. Hence, the findings implicate mismatch between glomerular enlargement and podocyte number as a crucial determinant of disease progression in ORG.


Asunto(s)
Tasa de Filtración Glomerular , Obesidad , Podocitos , Humanos , Podocitos/patología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Obesidad/complicaciones , Adulto , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Glomérulos Renales/patología , Progresión de la Enfermedad , Proteinuria/etiología , Proteinuria/patología , Recuento de Células , Factores de Tiempo , Pronóstico , Modelos de Riesgos Proporcionales
4.
Kidney Int ; 105(4): 671-673, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519234

RESUMEN

Rates of chronic kidney disease of unknown etiology are high in Aguascalientes, Mexico. Kidneys of adolescents are small by ultrasonography, compatible with oligonephronia, whereas proteinuria and higher estimated glomerular filtration rates and blood pressures among those with relatively higher kidney volumes probably flag relatively greater degrees of compensatory hypertrophy. Glomerulomegaly and podocytopathy, and later segmental glomerulosclerosis in biopsies, suggest a cascade driven by nephron deficiency. Better measures of glomerular number and volume should improve understanding, facilitate risk assessment, and guide interventions.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Insuficiencia Renal Crónica , Humanos , Adolescente , Glomeruloesclerosis Focal y Segmentaria/patología , Glomérulos Renales/patología , Riñón/patología , Nefronas , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica/patología
5.
Front Med (Lausanne) ; 11: 1343161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510448

RESUMEN

Corticosteroid therapy, often in combination with inhibition of the renin-angiotensin system, is first-line therapy for primary focal and segmental glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the response to treatment is variable, and therefore new approaches to indicate the response to therapy are required. Podocyte depletion is a hallmark of early FSGS, and here we investigated whether podocyte number, density and/or size in diagnostic biopsies and/or the degree of glomerulosclerosis could indicate the clinical response to first-line therapy. In this retrospective single center cohort study, 19 participants (13 responders, 6 non-responders) were included. Biopsies obtained at diagnosis were prepared for analysis of podocyte number, density and size using design-based stereology. Renal function and proteinuria were assessed 6 months after therapy commenced. Responders and non-responders had similar levels of proteinuria at the time of biopsy and similar kidney function. Patients who did not respond to treatment at 6 months had a significantly higher percentage of glomeruli with global sclerosis than responders (p < 0.05) and glomerulosclerotic index (p < 0.05). Podocyte number per glomerulus in responders was 279 (203-507; median, IQR), 50% greater than that of non-responders (186, 118-310; p < 0.05). These findings suggest that primary FSGS patients with higher podocyte number per glomerulus and less advanced glomerulosclerosis are more likely to respond to first-line therapy at 6 months. A podocyte number less than approximately 216 per glomerulus, a GSI greater than 1 and percentage global sclerosis greater than approximately 20% are associated with a lack of response to therapy. Larger, prospective studies are warranted to confirm whether these parameters may help inform therapeutic decision making at the time of diagnosis of primary FSGS.

7.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106143

RESUMEN

Low nephron number correlates with the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development. Differences in the expression of genes involved in metabolism were identified in most cell types we analyzed, yielding imbalances and shifts in cellular energy production. We further demonstrate that LPD impedes branching morphogenesis and significantly reduces the number of pretubular aggregates - the initial precursors to nephron formation. The most striking observation was that LPD changes the developmental trajectory of nephron progenitor cells, driving the formation of a partially committed cell population which likely reflects a failure of cells to commit to nephron formation and which ultimately reduces endowment. This unique profile of a fetal programming defect demonstrates that low nephron endowment arises from the pleiotropic impact of changes in branching morphogenesis and nephron progenitor cell commitment, the latter of which highlights a critical role for nutrition in regulating the cell fate decisions underpinning nephron endowment. Significance Statement: While a mother's diet and behavior can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.

8.
Kidney Int Rep ; 8(8): 1700, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37547519
9.
J Dev Orig Health Dis ; 14(3): 426-436, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647740

RESUMEN

Maternal protein restriction is often associated with structural and functional sequelae in offspring, particularly affecting growth and renal-cardiovascular function. However, there is little understanding as to whether hypertension and kidney disease occur because of a primary nephron deficit or whether controlling postnatal growth can result in normal renal-cardiovascular phenotypes. To investigate this, female Sprague-Dawley rats were fed either a low-protein (LP, 8.4% protein) or normal-protein (NP, 19.4% protein) diet prior to mating and until offspring were weaned at postnatal day (PN) 21. Offspring were then fed a non 'growth' (4.6% fat) which ensured that catch-up growth did not occur. Offspring growth was determined by weight and dual energy X-ray absorptiometry. Nephron number was determined at PN21 using the disector-fractionator method. Kidney function was measured at PN180 and PN360 using clearance methods. Blood pressure was measured at PN360 using radio-telemetry. Body weight was similar at PN1, but by PN21 LP offspring were 39% smaller than controls (Pdiet < 0.001). This difference was due to proportional changes in lean muscle, fat, and bone content. LP offspring remained smaller than NP offspring until PN360. In LP offspring, nephron number was 26% less in males and 17% less in females, than NP controls (Pdiet < 0.0004). Kidney function was similar across dietary groups and sexes at PN180 and PN360. Blood pressure was similar in LP and NP offspring at PN360. These findings suggest that remaining on a slow growth trajectory after exposure to a suboptimal intrauterine environment does not lead to the development of kidney dysfunction and hypertension.


Asunto(s)
Hipertensión , Efectos Tardíos de la Exposición Prenatal , Masculino , Ratas , Animales , Femenino , Humanos , Dieta con Restricción de Proteínas/efectos adversos , Ratas Sprague-Dawley , Riñón/metabolismo , Nefronas , Hipertensión/etiología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo
10.
Physiol Rep ; 11(2): e15579, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695822

RESUMEN

Podocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced. The aim of this study was to examine whether a suboptimal maternal environment would result in reduced podocyte endowment, increasing susceptibility to diabetes-induced renal injury. Female C57BL/6 mice were fed a low protein diet (LPD) to induce growth restriction or a normal protein diet (NPD) from 3 weeks before mating until weaning (postnatal Day 21, P21) when nephron and podocyte endowment were assessed in one male and one female offspring per litter. Littermates were administered streptozotocin or vehicle at 6 weeks of age. Urinary albumin excretion, glomerular size, and podometrics were assessed following 18 weeks of hyperglycemia. LPD offspring were growth restricted and had lower nephron and podocyte number at P21. However, by 24 weeks the podocyte deficit was no longer evident and despite low nephron endowment neither albuminuria nor glomerulosclerosis were observed. Podocyte number was unaffected by 18 weeks of hyperglycemia in NPD and LPD offspring. Diabetes increased glomerular volume reducing podocyte density, with more pronounced effects in LPD offspring. LPD and NPD diabetic offspring developed mild albuminuria with LPD demonstrating an earlier onset. LPD offspring also developed glomerular pathology. These findings indicate that growth-restricted LPD offspring with low nephron number and normalized podocyte endowment were more susceptible to alterations in glomerular volume and podocyte density leading to more rapid onset of albuminuria and renal injury than NPD offspring.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Podocitos , Insuficiencia Renal Crónica , Ratones , Animales , Masculino , Femenino , Albuminuria , Ratones Endogámicos C57BL
11.
Kidney Int ; 102(5): 1127-1135, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36175177

RESUMEN

Podocyte loss and resultant nephron loss are common processes in the development of glomerulosclerosis and chronic kidney disease. While the cortical distribution of glomerulosclerosis is known to be non-uniform, the relationship between the numbers of non-sclerotic glomeruli (NSG), podometrics and zonal differences in podometrics remain incompletely understood. To help define this, we studied autopsy kidneys from 50 adults with median age 68 years and median eGFR 73.5 mL/min/1.73m2 without apparent glomerular disease in a cross-sectional analysis. The number of NSG per kidney was estimated using the physical dissector/fractionator combination, while podometrics were estimated using model-based stereology. The number of NSG per kidney was directly correlated with podocyte number per tuft and podocyte density. Each additional 100,000 NSG per kidney was associated with 26 more podocytes per glomerulus and 16 podocytes per 106 µm3 increase in podocyte density. These associations were independent of clinical factors and cortical zone. While podocyte number per glomerulus was similar in the three zones, superficial glomeruli were the smallest and had the highest podocyte density but smallest podocytes. Increasing age and hypertension were associated with lower podocyte number, with age mostly affecting superficial glomeruli, and hypertension mostly affecting juxtamedullary glomeruli. Thus, in this first study to report a direct correlation between the number of NSG and podometrics, we suggest that podocyte number is decreasing in NSG of individuals losing nephrons. However, another possible interpretation may be that more nephrons might protect against further podocyte loss.


Asunto(s)
Hipertensión , Podocitos , Adulto , Humanos , Anciano , Estudios Transversales , Glomérulos Renales , Riñón
12.
Cell Tissue Res ; 388(2): 439-451, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35290515

RESUMEN

Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.


Asunto(s)
Envejecimiento , Podocitos , Albuminuria/metabolismo , Albuminuria/patología , Animales , Femenino , Hipertrofia/metabolismo , Hipertrofia/patología , Masculino , Ratones , Podocitos/citología , Proteinuria , Serina-Treonina Quinasas TOR/metabolismo
13.
Am J Physiol Renal Physiol ; 321(3): F322-F334, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34308670

RESUMEN

Low birth weight is a risk factor for chronic kidney disease, whereas adult podocyte depletion is a key event in the pathogenesis of glomerulosclerosis. However, whether low birth weight due to poor maternal nutrition is associated with low podocyte endowment and glomerulosclerosis in later life is not known. Female Sprague-Dawley rats were fed a normal-protein diet (NPD; 20%) or low-protein diet (LPD; 8%), to induce low birth weight, from 3 wk before mating until postnatal day 21 (PN21), when kidneys from some male offspring were taken for quantitation of podocyte number and density in whole glomeruli using immunolabeling, tissue clearing, and confocal microscopy. The remaining offspring were fed a normal- or high-fat diet until 6 mo to induce catch-up growth and excessive weight gain, respectively. At PN21, podocyte number per glomerulus was 15% lower in low birth weight (LPD) than normal birth weight (NPD) offspring, with this deficit greater in outer glomeruli. Surprisingly, podocyte number in LPD offspring increased in outer glomeruli between PN21 and 6 mo, although an overall 9% podocyte deficit persisted. Postnatal fat feeding to LPD offspring did not alter podometric indexes or result in glomerular pathology at 6 mo, whereas fat feeding in NPD offspring was associated with far greater body and fat mass as well as podocyte loss, reduced podocyte density, albuminuria, and glomerulosclerosis. This is the first report that maternal diet can influence podocyte endowment. Our findings provide new insights into the impact of low birth weight, podocyte endowment, and postnatal weight on podometrics and kidney health in adulthood.NEW & NOTEWORTHY The present study shows, for the first time, that low birth weight as a result of maternal nutrition is associated with low podocyte endowment. However, a mild podocyte deficit at birth did not result in glomerular pathology in adulthood. In contrast, postnatal podocyte loss in combination with excessive body weight led to albuminuria and glomerulosclerosis. Taken together, these findings provide new insights into the associations between birth weight, podocyte indexes, postnatal weight, and glomerular pathology.


Asunto(s)
Tamaño Corporal/fisiología , Enfermedades Renales/patología , Podocitos/patología , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Peso al Nacer/fisiología , Femenino , Riñón/patología , Glomérulos Renales/patología , Embarazo , Ratas Sprague-Dawley
14.
Kidney Int ; 100(4): 780-786, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34089762

RESUMEN

For decades, measurements of kidney microanatomy using 2-dimensional sections has provided us with a detailed knowledge of kidney morphology under physiological and pathological conditions. However, the rapid development of tissue clearing methods in recent years, in combination with the development of novel 3-dimensional imaging modalities have provided new insights into kidney structure and function. This review article describes a range of novel insights into kidney development and disease obtained recently using these new methodological approaches. For example, in the developing kidney these approaches have provided new understandings of ureteric branching morphogenesis, nephron progenitor cell proliferation and commitment, interactions between ureteric tip cells and nephron progenitor cells, and the establishment of nephron segmentation. In whole adult mouse kidneys, tissue clearing combined with light sheet microscopy can image and quantify the total number of glomeruli, a major breakthrough in the field. Similar approaches have provided new insights into the structure of the renal vasculature and innervation, tubulointerstitial remodeling, podocyte loss and hypertrophy, cyst formation, the evolution of cellular crescents, and the structure of the glomerular filtration barrier. Many more advances in the understanding of kidney biology and pathology can be expected as additional clearing and imaging techniques are developed and adopted by more investigators.


Asunto(s)
Podocitos , Uréter , Animales , Riñón/diagnóstico por imagen , Glomérulos Renales , Ratones , Nefronas , Organogénesis
15.
J Am Soc Nephrol ; 32(5): 1187-1199, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627345

RESUMEN

BACKGROUND: Podocyte depletion, low nephron number, aging, and hypertension are associated with glomerulosclerosis and CKD. However, the relationship between podometrics and nephron number has not previously been examined. METHODS: To investigate podometrics and nephron number in healthy Japanese individuals, a population characterized by a relatively low nephron number, we immunostained single paraffin sections from 30 Japanese living-kidney donors (median age, 57 years) with podocyte-specific markers and analyzed images obtained with confocal microscopy. We used model-based stereology to estimate podometrics, and a combined enhanced-computed tomography/biopsy-specimen stereology method to estimate nephron number. RESULTS: The median number of nonsclerotic nephrons per kidney was 659,000 (interquartile range [IQR], 564,000-825,000). The median podocyte number and podocyte density were 518 (IQR, 428-601) per tuft and 219 (IQR, 180-253) per 106µm3, respectively; these values are similar to those previously reported for other races. Total podocyte number per kidney (obtained by multiplying the individual number of nonsclerotic glomeruli by podocyte number per glomerulus) was 376 million (IQR, 259-449 million) and ranged 7.4-fold between donors. On average, these healthy kidneys lost 5.63 million podocytes per kidney per year, with most of this loss associated with glomerular loss resulting from global glomerulosclerosis, rather than podocyte loss from healthy glomeruli. Hypertension was associated with lower podocyte density and larger podocyte volume, independent of age. CONCLUSIONS: Estimation of the number of nephrons, podocytes, and other podometric parameters in individual kidneys provides new insights into the relationships between these parameters, age, and hypertension in the kidney. This approach might be of considerable value in evaluating the kidney in health and disease.


Asunto(s)
Hipertensión/patología , Glomérulos Renales/patología , Trasplante de Riñón , Donadores Vivos , Podocitos/patología , Factores de Edad , Anciano , Estudios de Casos y Controles , Recuento de Células , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad
16.
Kidney360 ; 2(5): 828-841, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35373063

RESUMEN

Background: Single-nephron dynamics in progressive IgA nephropathy (IgAN) have not been studied. We applied novel methodology to explore single-nephron parameters in IgAN. Methods: Nonglobally sclerotic glomeruli (NSG) and globally sclerotic glomeruli (GSG) per kidney were estimated using cortical volume assessment via unenhanced computed tomography and biopsy-based stereology. Estimated single-nephron GFR (eSNGFR) and single-nephron urine protein excretion (SNUPE) were calculated by dividing eGFR and UPE by the number of NSG. Associations with CKD stage and clinicopathologic findings were cross-sectionally investigated. Results: This study included 245 patients with IgAN (mean age 43 years, 62% male, 45% on renin-angiotensin aldosterone system [RAAS] inhibitors prebiopsy) evaluated at kidney biopsy. CKD stages were 10% CKD1, 43% CKD2, 19% CKD3a, 14% CKD3b, and 14% CKD4-5. With advancing CKD stage, NSG decreased from mean 992,000 to 300,000 per kidney, whereas GSG increased from median 64,000 to 202,000 per kidney. In multivariable models, advancing CKD stage associated with lower numbers of NSG, higher numbers of GSG, and lower numbers of GSG + NSG, indicating potential resorption of sclerosed glomeruli. In contrast to the higher mean glomerular volume and markedly elevated SNUPE in advanced CKD, the eSNGFR was largely unaffected by CKD stage. Lower SNGFR associated with Oxford scores for endocapillary hypercellularity and crescents, whereas higher SNUPE associated with segmental glomerulosclerosis and tubulointerstitial scarring. Conclusions: SNUPE emerged as a sensitive biomarker of advancing IgAN. The failure of eSNGFR to increase in response to reduced number of functioning nephrons suggests limited capacity for compensatory hyperfiltration by diseased glomeruli with intrinsic lesions.


Asunto(s)
Glomerulonefritis por IGA , Adulto , Femenino , Tasa de Filtración Glomerular , Glomerulonefritis por IGA/patología , Humanos , Riñón/patología , Glomérulos Renales/patología , Masculino , Nefronas/patología
17.
Kidney Int ; 98(3): 545-547, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32828235

RESUMEN

Associations among hypertension, podocyte depletion, and chronic kidney disease are well-established, but whether mean arterial pressure (MAP) in the normal range influences podocyte depletion has not been previously examined. In this issue, Naik et al. use non-invasive urinary mRNA analysis to demonstrate that higher podocyte stress and detachment are associated with higher MAP in the normal range. The relationship between blood pressure and podocyte health suddenly got much more interesting.


Asunto(s)
Hipertensión Renal , Nefritis , Nefroesclerosis , Podocitos , Presión Sanguínea , Humanos
18.
Anat Rec (Hoboken) ; 303(10): 2657-2667, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32567250

RESUMEN

A maternal low protein (LP) diet in rodents often results in low nephron endowment and renal pathophysiology in adult life, with outcomes often differing between male and female offspring. Precisely how a maternal LP diet results in low nephron endowment is unknown. We conducted morphological and molecular studies of branching morphogenesis and nephrogenesis to identify mechanisms and timepoints that might give rise to low nephron endowment. Sprague-Dawley rats were fed a normal protein (19.4% protein, NP) or LP (9% protein) diet for 3 weeks prior to mating and throughout gestation. Embryonic day 14.25 (E14.25) kidneys from males and females were either cultured for 2 days after which branching morphogenesis was quantified, or frozen for gene expression analysis. Real-time PCR was used to quantify expression of key nephrogenesis and branching morphogenesis genes at E14.25 and 17.25. At E17.25, nephron number was determined in fixed tissue. There was no effect of either maternal diet or sex on branching morphogenesis. Nephron number at E17.25 was 14% lower in male and female LP offspring than in NP controls. At E14.25 expression levels of genes involved in branching morphogenesis (Gfrα1, Bmp4, Gdnf) and nephrogenesis (Hnf4a, Pax2, Wnt4) were similar in the dietary groups, but significant differences between sexes were identified. At E17.25, expression of Gfrα1, Gdnf, Bmp4, Pax2 and Six2 was lower in LP offspring than NP offspring, in both male and female offspring. These findings provide new insights into how a LP diet leads to low nephron endowment and renal sexual dimorphism.


Asunto(s)
Dieta con Restricción de Proteínas , Expresión Génica , Riñón/embriología , Organogénesis/genética , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Riñón/metabolismo , Masculino , Nefronas/embriología , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
19.
EMBO Rep ; 21(2): e48781, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31916354

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-ß1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti-Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Glucólisis/genética , Riñón , Ratones , Podocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Anat Rec (Hoboken) ; 303(10): 2516-2525, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31916419

RESUMEN

In 1998, I was appointed Chair of the Department of Anatomy at Monash University in Melbourne, Australia. On commencing as Chair, I had three main goals: (a) to maintain and extend the high quality of anatomy teaching in the medical program; (b) to introduce significantly more developmental biology, cell biology, and neuroscience into our existing Bachelor of Science major in human anatomy; and (c) to establish an active research program in the department. Over the next 18 years, I worked with staff and students at all levels of the university to turn this vision into a reality, with the Monash Department of Anatomy and Developmental Biology now arguably the top ranked anatomy department in Australia. During my tenure, countless challenges were faced and while some errors were made, and a good number of goals were never realized the general outcome was a vibrant scholarly environment where that rich nexus of research and teaching was realized. This personal account provides some insights into that 18-year journey, which I hope may prove useful for current and future Chairs of anatomy. For me personally, it was definitely a journey worth taking.


Asunto(s)
Anatomía/educación , Liderazgo , Universidades , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA