Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Ann Intensive Care ; 13(1): 101, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833435

RESUMEN

BACKGROUND: Acute respiratory failure (ARF) is the leading cause of ICU admission. Viruses are increasingly recognized as a cause of pneumonia in immunocompromised patients, but epidemiologic data are scarce. We used the Groupe de Recherche en Réanimation Respiratoire en Onco-Hématologie's database (2003-2017, 72 intensive care units) to describe the spectrum of critically ill immunocompromised patients with virus-detected ARF and to report their outcomes. Then, patients with virus-detected ARF were matched based on clinical characteristics and severity (1:3 ratio) with patients with ARF from other origins. RESULTS: Of the 4038 immunocompromised patients in the whole cohort, 370 (9.2%) had a diagnosis of virus-detected ARF and were included in the study. Influenza was the most common virus (59%), followed by respiratory syncytial virus (14%), with significant seasonal variation. An associated bacterial infection was identified in 79 patients (21%) and an invasive pulmonary aspergillosis in 23 patients (6%). The crude in-hospital mortality rate was 37.8%. Factors associated with mortality were: neutropenia (OR = 1.74, 95% confidence interval, CI [1.05-2.89]), poor performance status (OR = 1.84, CI [1.12-3.03]), and the need for invasive mechanical ventilation on the day of admission (OR = 1.97, CI [1.14-3.40]). The type of virus was not associated with mortality. After matching, patients with virus-detected ARF had lower mortality (OR = 0.77, CI [0.60-0.98]) than patients with ARF from other causes. This result was mostly driven by influenza-like viruses, namely, respiratory syncytial virus, parainfluenza virus, and human metapneumovirus (OR = 0.54, CI [0.33-0.88]). CONCLUSIONS: In immunocompromised patients with virus-detected ARF, mortality is high, whatever the species, mainly influenced by clinical severity and poor general status. However, compared to non-viral ARF, in-hospital mortality was lower, especially for patients with detected viruses other than influenza.

2.
J Opt Soc Am A Opt Image Sci Vis ; 37(1): 70-83, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32118883

RESUMEN

We introduce a numerical method that enables efficient modeling of light scattering by large, disordered ensembles of non-spherical particles incorporated in stratified media, including when the particles are in close vicinity to each other, to planar interfaces, and/or to localized light sources. The method consists of finding a small set of fictitious polarizable elements-or numerical dipoles-that quantitatively reproduces the field scattered by an individual particle for any excitation and at an arbitrary distance from the particle surface. The set of numerical dipoles is described by a global polarizability matrix that is determined numerically by solving an inverse problem relying on fullwave simulations. The latter are classical and may be performed with any Maxwell's equations solver. Spatial non-locality is an important feature of the numerical dipoles set, providing additional degrees of freedom compared to classical coupled dipoles to reconstruct complex scattered fields. Once the polarizability matrix describing scattering by an individual particle is determined, the multiple scattering problem by ensembles of such particles in stratified media can be solved using a Green tensor formalism and only a few numerical dipoles, thereby with a low physical memory usage, even for dense systems in close vicinity to interfaces. The performance of the method is studied with the example of large high-aspect-ratio high-index dielectric cylinders. The method is easy to implement and may offer new possibilities for the study of complex nanostructured surfaces, which are becoming widespread in emerging photonic technologies.

3.
Nature ; 562(7725): 101-104, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250251

RESUMEN

Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal-oxide-semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA