Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 26(Pt 2): 473-482, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855258

RESUMEN

Three experiments are reviewed, performed (in 2014-2016) at ID18 of ESRF to measure the influence of acceleration on time dilation by measuring the relative shift between the absorption lines of two states of the same rotating absorber with accelerations anti-parallel and parallel to the incident beam. Statistically significant data for rotation frequencies up to 510 Hz in both directions of rotation were collected. For each run with high rotation, a stable statistically significant `vibration-free' relative shift between the absorption lines of the two states was measured. This may indicate the influence of acceleration on time dilation. However, the measured relative shift was also affected by the use of a slit necessary to focus the beam to the axis of rotation to a focal spot of sub-micrometre size. The introduction of the slit broke the symmetry in the absorption lines due to the nuclear lighthouse effect and affected the measured relative shift, preventing to claim conclusively the influence of acceleration on time dilation. Assuming that this loss of symmetry is of first order, the zero value of the relative shift, corrected for this loss, falls always within the experimental error limits, as predicted by Einstein's clock hypothesis. The requirements and an indispensable plan for a conclusive experiment, once the improved technology becomes available, is presented. This will be useful to future experimentalists wishing to pursue this experiment or a related rotor experiment involving a Mössbauer absorber and a synchrotron Mössbauer source.

2.
Nanoscale ; 7(30): 12878-87, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26162007

RESUMEN

To design custom magnetic nanostructures, it is indispensable to acquire precise knowledge about the systems in the nanoscale range where the magnetism forms. In this paper we present the effect of a curved surface on the evolution of magnetism in ultrathin iron films. Nominally 70 Å thick iron films were deposited in 9 steps on 3 different types of templates: (a) a monolayer of silica spheres with 25 nm diameter, (b) a monolayer of silica spheres with 400 nm diameter and (c) for comparison a flat silicon substrate. In situ iron evaporation took place in an ultrahigh vacuum chamber using the molecular beam epitaxy technique. After the evaporation steps, time differential nuclear forward scattering spectra, grazing incidence small angle X-ray scattering images and X-ray reflectivity curves were recorded. In order to reconstruct and visualize the magnetic moment configuration in the iron cap formed on top of the silica spheres, micromagnetic simulations were performed for all iron thicknesses. We found a great influence of the template topography on the onset of magnetism and on the developed magnetic nanostructure. We observed an individual magnetic behaviour for the 400 nm spheres which was modelled by vortex formation and a collective magnetic structure for the 25 nm spheres where magnetic domains spread over several particles. Depth selective nuclear forward scattering measurements showed that the formation of magnetism begins at the top region of the 400 nm spheres in contrast to the 25 nm particles where the magnetism first appears in the region where the spheres are in contact with each other.

3.
J Phys Condens Matter ; 26(48): 485401, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25374424

RESUMEN

The lattice dynamics of polycrystalline Mg(2)Ge and Mg(2)Si are compared using both microscopic and macroscopic measurements as well as theoretical calculations. The volume thermal expansion coefficient between 200 and 300 K was found to be 4.37(5) · 10(-5) K(-1) in Mg(2)Ge, compared to 3.69(5) · 10(-5) K(-1) in Mg(2)Si. Inelastic neutron scattering measurements yield densities of phonon states which are in line with theoretical calculations. The microscopic data were corroborated with macroscopic calorimetry measurements and provide quantified values for anharmonicity. The estimated macroscopic Grüneisen parameter is, γ(Mg(2)Si) = 1.17(5) and γ(Mg(2)Ge) = 1.46(5) at 295 K, in excellent agreement with Raman scattering data. Although the element specific mean force constants are practically the same, in Mg(2)Ge and Mg(2)Si, a mass homology relation alone cannot reproduce the difference in the partial densities of vibrational states in these compounds and differences in elemental bonding should be taken into account.

4.
Phys Rev Lett ; 113(14): 147601, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25325660

RESUMEN

We measured nuclear forward scattering spectra utilizing the (99)Ru transition, 89.571(3) keV, with a notably mixed E2/M1 multipolarity. The extension of the standard evaluation routines to include mixed multipolarity allows us to extract electric and magnetic hyperfine interactions from (99)Ru-containing compounds. This paves the way for several other high-energy Mössbauer transitions, E ∼ 90 keV. The high energy of such transitions allows for operando nuclear forward scattering studies in real devices.

5.
Phys Rev Lett ; 112(2): 025502, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484025

RESUMEN

We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline polymorphs with matched densities, the DOS of the glass appears as the smoothed counterpart of the DOS of the corresponding crystal; it reveals the same number of the excess states relative to the Debye model, the same number of all states in the low-energy region, and it provides the same specific heat. This shows that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.

6.
J Synchrotron Radiat ; 18(Pt 5): 802-10, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862862

RESUMEN

A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20-40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of (121)Sb at 37.13 keV, (125)Te at 35.49 keV, (119)Sn at 23.88 keV, (149)Sm at 22.50 keV and (151)Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150-300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA