Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Phytochemistry ; 229: 114271, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260586

RESUMEN

Phenolamides are specialized metabolites widely distributed in the plant kingdom. Their structure is composed by the association of hydroxycinnamic acid derivatives to mono-/poly-amine through an amination catalyzed by N-hydroxycinnamoyltransferases enzymes. Tomato plants accumulate putrescine-derived phenolamides in their vegetative parts. Recently, two first genes coding for putrescine-hydroxycinnamoyltransferase (PHT, Solyc11g071470 and Solyc11g071480) were identified in tomato and demonstrated to control the leaf accumulation of caffeoylputrescine in response to leafminer infestation. In this study, two additional genes (Solyc06g074710 and Solyc11g066640) were functionally characterized as new tomato PHT. The substrate specificity and the expression pattern in planta were determined for the four tomato PHT. Taken together the results give a comprehensive view of the control of the putrescine-derived phenolamide accumulation in tomato plant through the biochemical specificity and the spatial expression of this small family of PHT.

2.
Curr Opin Biotechnol ; 87: 103135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38728826

RESUMEN

Plant bioactives hold immense potential in the medicine and food industry. The recent advancements in omics applied in deciphering specialized metabolic pathways underscore the importance of high-quality genome releases and the wealth of data in metabolomics and transcriptomics. While harnessing data, whether integrated or standalone, has proven successful in unveiling plant natural product (PNP) biosynthetic pathways, the democratization of machine learning in biology opens exciting new opportunities for enhancing the exploration of these pathways. This review highlights the recent breakthroughs in disrupting plant-specialized biosynthetic pathways through the utilization of omics data harnessing and machine learning techniques.


Asunto(s)
Aprendizaje Automático , Metabolómica , Plantas , Plantas/metabolismo , Plantas/genética , Metabolómica/métodos , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Genómica/métodos
3.
ACS Synth Biol ; 13(5): 1498-1512, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38635307

RESUMEN

Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Humanos , Vías Biosintéticas , Yohimbina/metabolismo , Yohimbina/farmacología , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides Indólicos/metabolismo , Descubrimiento de Drogas/métodos
4.
Heliyon ; 10(6): e28078, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533072

RESUMEN

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.

5.
Curr Opin Biotechnol ; 87: 103098, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452572

RESUMEN

Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.


Asunto(s)
Productos Biológicos , Productos Biológicos/metabolismo , Plantas/metabolismo , Biotecnología/métodos , Biología Sintética , Levaduras/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Humanos
7.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932529

RESUMEN

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Asunto(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas de Plantas/metabolismo
8.
Commun Biol ; 6(1): 1197, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001233

RESUMEN

Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.


Asunto(s)
Rauwolfia , Rauwolfia/genética , Rauwolfia/metabolismo , Monoterpenos , Alcaloides Indólicos/metabolismo
9.
Molecules ; 28(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299031

RESUMEN

The composition of bioactive polyphenols from grape canes, an important viticultural byproduct, was shown to be varietal-dependent; however, the influence of soil-related terroir factors remains unexplored. Using spatial metabolomics and correlation-based networks, we investigated how continuous changes in soil features and topography may impact the polyphenol composition in grape canes. Soil properties, topography, and grape cane extracts were analyzed at georeferenced points over 3 consecutive years, followed by UPLC-DAD-MS-based metabolomic analysis targeting 42 metabolites. Principal component analyses on intra-vintage metabolomic data presented a good reproducibility in relation to geographic coordinates. A correlation-driven approach was used to explore the combined influence of soil and topographic variables on metabolomic responses. As a result, a metabolic cluster including flavonoids was correlated with elevation and curvature. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.


Asunto(s)
Vitis , Vitis/metabolismo , Polifenoles/metabolismo , Reproducibilidad de los Resultados , Metabolómica , Suelo
10.
Synth Syst Biotechnol ; 8(2): 224-226, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36936387

RESUMEN

Synthetic biology is constantly making progress for producing compounds on demand. Recently, Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane. This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.

11.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35947213

RESUMEN

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Asunto(s)
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
13.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36300641

RESUMEN

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.


Asunto(s)
Plantas Medicinales , Voacanga , Plantas Medicinales/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Semillas , Genoma de Planta
14.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200869

RESUMEN

Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.


Asunto(s)
Vinca , Monoterpenos , Filogenia , Evolución Biológica , Fenotipo
15.
Methods Mol Biol ; 2505: 131-140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732942

RESUMEN

Elucidation of biological pathways leading to specialized metabolites remains a complex task. It is however a mandatory step to allow bioproduction into heterologous hosts. Many steps have already been identified using conventional approaches, enlarging the space of known possible chemical steps. In the recent past years, identification of missing steps has been fueled by the generation of genomic and transcriptomic data for nonmodel species. The analysis of gene expression profiles has revealed that in many cases, genes encoding enzymes involved in the same biosynthetic pathways are coexpressed across different tissue types and environmental conditions. Hence, coexpressed studies, either in the form of differential gene expression, gene coexpression network, or unsupervised clustering methods, have helped deciphering missing steps to complete knowledge on biosynthetic pathways. Already identified biosynthetic steps can be used as baits to capture the remaining unknown steps. The present protocol shows how supervised machine learning in the form of artificial neural networks (ANNs) can efficiently classify genes as specialized metabolism related or not according to their expression levels. Using Catharanthus roseus as an example, we show that ANN trained on a minimal set of bait genes results in many true positives (correctly predicted genes) while keeping false positives low (containing possible candidate genes).


Asunto(s)
Catharanthus , Monoterpenos , Vías Biosintéticas , Catharanthus/metabolismo , Regulación de la Expresión Génica de las Plantas , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Redes Neurales de la Computación , Proteínas de Plantas/metabolismo
16.
Methods Mol Biol ; 2505: 263-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732951

RESUMEN

Functional genomics analyses in planta can be hampered in non-model plants that are recalcitrant to the genetic transformation such as the medicinal plant Catharanthus roseus (Apocynaceae). No stable transformation and regeneration of plantlets have been achieved with a high efficiency in this plant to date. In addition, while virus-mediated transient gene silencing has been reported a decade ago in C. roseus, tools for transient overexpression remain scarce. Here, we describe an efficient and reliable methodology for transiently overexpressing any gene of interest in C. roseus leaves. This protocol combines a vacuum-based Agroinfiltration approach and the high translational efficiency of a deconstructed virus-based binary vector (pEAQ-HT). The described methodology is robust, easy to perform, and results in high amount of transient expression in C. roseus. This protocol is expected to serve as valuable tool to enhance the in planta characterization of gene functions or even transiently knock-in novel enzymatic activities.


Asunto(s)
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Vectores Genéticos/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Vacio
17.
Plant Physiol ; 189(4): 2029-2043, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604091

RESUMEN

Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.


Asunto(s)
Aciltransferasas , Cichorium intybus , Aciltransferasas/genética , Aciltransferasas/metabolismo , Alquenos , Compuestos Aza , Cichorium intybus/genética , Cichorium intybus/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
18.
Plant Cell Physiol ; 63(2): 200-216, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166361

RESUMEN

Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.


Asunto(s)
Catharanthus , Monoterpenos , Alcaloides Indólicos , Metiltransferasas , Peroxisomas , Proteínas de Plantas , gamma-Tocoferol
19.
F1000Res ; 11: 1541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761838

RESUMEN

The Madagascar periwinkle, Catharanthus roseus, belongs to the Apocynaceae family. This medicinal plant, endemic to Madagascar, produces many important drugs including the monoterpene indole alkaloids (MIA) vincristine and vinblastine used to treat cancer worldwide. Here, we provide a new version of the C. roseus genome sequence obtained through the combination of Oxford Nanopore Technologies long-reads and Illumina short-reads. This more contiguous assembly consists of 173 scaffolds with a total length of 581.128 Mb and an N50 of 12.241 Mb. Using publicly available RNAseq data, 21,061 protein coding genes were predicted and functionally annotated. A total of 42.87% of the genome was annotated as transposable elements, most of them being long-terminal repeats. Together with the increasing access to MIA-producing plant genomes, this updated version should ease evolutionary studies leading to a better understanding of MIA biosynthetic pathway evolution.


Asunto(s)
Catharanthus , Plantas Medicinales , Catharanthus/genética , Catharanthus/metabolismo , Genoma de Planta , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
20.
mBio ; 12(5): e0197621, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34579577

RESUMEN

Terpenoids, such as squalene, are valuable compounds for cosmetic and drug industries, the supply of which is often limited by natural sources. Alternative production strategies have been investigated for decades but remain challenging due to low yields. In a recent study, Zhang and coworkers (A. Zhang, K. Mernitz, C. Wu, W. Xiong, et al., mBio 12:e0088121, 2021, https://doi.org/10.1128/mBio.00881-21) report the potential use of marine thraustochytrid metabolic thermodynamics in effective terpene engineering. Through comparative proteomics and metabolomics, as well as thermodynamic modeling, the authors demonstrated sodium-induced changes in thraustochytrid metabolism leading to a twofold increase in squalene accumulation. The differential abundances of the metabolic enzymes and metabolites, as well as higher respiration, indicated the metabolic shift from carbohydrate to lipid oxidation and increased ATP input to the mevalonate pathway and squalene synthesis. This breakthrough provides new important insights into microbial terpene metabolic engineering but above all displays thermodynamics as a valuable tool in metabolic engineering.


Asunto(s)
Escualeno/metabolismo , Estramenopilos/metabolismo , Adenosina Trifosfato/metabolismo , Ingeniería Metabólica , Agua de Mar/parasitología , Sodio/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA