Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
mBio ; 15(6): e0060924, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38742824

RESUMEN

Mycobacterium abscessus (Mab) affects patients with immunosuppression or underlying structural lung diseases such as cystic fibrosis (CF). Additionally, Mab poses clinical challenges due to its resistance to multiple antibiotics. Herein, we investigated the synergistic effect of dual ß-lactams [sulopenem and cefuroxime (CXM)] or the combination of sulopenem and CXM with ß-lactamase inhibitors [BLIs-avibactam (AVI) or durlobactam (DUR)]. The sulopenem-CXM combination yielded low minimum inhibitory concentration (MIC) values for 54 clinical Mab isolates and ATCC19977 (MIC50 and MIC90 ≤0.25 µg/mL). Similar synergistic effects were observed in time-kill studies conducted at concentrations achievable in clinical settings. Sulopenem-CXM outperformed monotherapy, yielding ~1.5 Log10 CFU/mL reduction during 10 days. Addition of BLIs enhanced this antibacterial effect, resulting in an additional reduction of CFUs (~3 Log10 for sulopenem-CXM and AVI and ~4 Log10 for sulopenem-DUR). Exploration of the potential mechanisms of the synergy focused on their interactions with L,D-transpeptidases (Ldts; LdtMab1-LdtMab4), penicillin-binding-protein B (PBP B), and D,D-carboxypeptidase (DDC). Acyl complexes, identified via mass spectrometry analysis, demonstrated the binding of sulopenem with LdtMab2-LdtMab4, DDC, and PBP B and CXM with LdtMab2 and PBP B. Molecular docking and mass spectrometry data suggest the formation of a covalent adduct between sulopenem and LdtMab2 after the nucleophilic attack of the cysteine residue at the ß-lactam carbonyl carbon, leading to the cleavage of the ß-lactam ring and the establishment of a thioester bond linking the LdtMab2 with sulopenem. In conclusion, we demonstrated the biochemical basis of the synergy of sulopenem-CXM with or without BLIs. These findings potentially broaden the selection of oral therapeutic agents to combat Mab. IMPORTANCE: Treating infections from Mycobacterium abscessus (Mab), particularly those resistant to common antibiotics like macrolides, is notoriously difficult, akin to a never-ending struggle for healthcare providers. The rate of treatment failure is even higher than that seen with multidrug-resistant tuberculosis. The role of combination ß-lactams in inhibiting L,D-transpeptidation, the major peptidoglycan crosslink reaction in Mab, is an area of intense investigation, and clinicians have utilized this approach in the treatment of macrolide-resistant Mab, with reports showing clinical success. In our study, we found that cefuroxime and sulopenem, when used together, display a significant synergistic effect. If this promising result seen in lab settings, translates well into real-world clinical effectiveness, it could revolutionize current treatment methods. This combination could either replace the need for more complex intravenous medications or serve as a "step down" to an oral medication regimen. Such a shift would be much easier for patients to manage, enhancing their comfort and likelihood of sticking to the treatment plan, which could lead to better outcomes in tackling these tough infections. Our research delved into how these drugs inhibit cell wall synthesis, examined time-kill data and binding studies, and provided a scientific basis for the observed synergy in cell-based assays.


Asunto(s)
Antibacterianos , Cefuroxima , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Mycobacterium abscessus , Mycobacterium abscessus/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Cefuroxima/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Inhibidores de beta-Lactamasas/farmacología , Simulación del Acoplamiento Molecular , Prohibitinas
2.
J Chem Inf Model ; 64(10): 3977-3991, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38727192

RESUMEN

The worldwide spread of the metallo-ß-lactamases (MBL), especially New Delhi metallo-ß-lactamase-1 (NDM-1), is threatening the efficacy of ß-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.


Asunto(s)
Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Inhibidores de beta-Lactamasas , beta-Lactamasas , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Ensayos Analíticos de Alto Rendimiento
3.
ACS Infect Dis ; 10(5): 1767-1779, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38619138

RESUMEN

Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum ß-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb ß-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 µM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 µM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 µg/mL, similar to the ranges for meropenem (1-32 µg/mL) and imipenem (0.5-64 µg/mL). In ß-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel ß-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.


Asunto(s)
Mycobacterium tuberculosis , Inhibidores de beta-Lactamasas , beta-Lactamasas , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Peptidil Transferasas/antagonistas & inhibidores , Peptidil Transferasas/metabolismo , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/química , Pruebas de Sensibilidad Microbiana , Antituberculosos/farmacología , Antituberculosos/química , Simulación del Acoplamiento Molecular , Peptidoglicano/metabolismo , Peptidoglicano/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cinética , Aminoaciltransferasas
4.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38370743

RESUMEN

The expression of antibiotic-inactivating enzymes, such as Pseudomonas-derived cephalosporinase-3 (PDC-3), is a major mechanism of intrinsic resistance in bacteria. To explore the relationships between structural dynamics and altered substrate specificity as a result of amino acid substitutions in PDC-3, innovative computational methods like machine learning driven adaptive bandit molecular dynamics simulations and markov state modeling of the wild-type PDC-3 and nine clinically identified variants were conducted. Our analysis reveals that structural changes in the Ω loop controls the dynamics of the active site. The E219K and Y221A substitutions have the most pronounced effects. The modulation of three key hydrogen bonds K67(sc)-G220(bb), Y150(bb)-A292(bb) and N287(sc)-N314(sc) were found to result in an expansion of the active site, which could have implications for the binding and inactivation of cephalosporins. Overall, the findings highlight the importance of understanding the structural dynamics of PDC-3 in the development of new treatments for antibiotic-resistant infections.

5.
Antimicrob Agents Chemother ; 68(2): e0133223, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38174924

RESUMEN

Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid ß-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-ß-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.


Asunto(s)
Antibacterianos , Ácidos Borínicos , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Ácidos Carboxílicos/farmacología , Ácidos Borínicos/farmacología , Ceftazidima , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana
6.
Angew Chem Int Ed Engl ; 63(12): e202317315, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38227422

RESUMEN

The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.


Asunto(s)
Antibacterianos , Ceftazidima , Ceftazidima/química , Ceftazidima/metabolismo , Antibacterianos/química , beta-Lactamasas/metabolismo , Proteínas Bacterianas/metabolismo , Compuestos de Azabiciclo , Sustitución de Aminoácidos , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas
7.
Antimicrob Agents Chemother ; 67(11): e0071423, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37874296

RESUMEN

ß-Lactam antibiotics are among the most frequently prescribed therapeutic agents. A common mechanism of resistance toward ß-lactam antibiotics is the production of ß-lactamases. These enzymes are capable of hydrolyzing the ß-lactam bond, rendering the drug inactive. Among the four described classes, the metallo- ß-lactamases (MBLs, class B) employ one or two zinc ions in the active site for catalysis. One of the three most clinically relevant MBLs is New Delhi Metallo- ß-Lactamase (NDM-1). The current study sought to investigate the in vitro protein evolution of NDM-1 ß-lactamase using error-prone polymerase chain reaction. Evaluation revealed that variants were not found to confer higher levels of resistance toward meropenem based on amino acid substitutions. Thus, we postulate that increases in transcription or changes in zinc transport may be clinically more relevant to meropenem resistance than amino acid substitutions.


Asunto(s)
beta-Lactamasas , beta-Lactamas , Meropenem , beta-Lactamasas/metabolismo , beta-Lactamas/química , Zinc , Dominio Catalítico , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas/química
8.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578017

RESUMEN

To counter the emergence of ß-lactamase (BL) mediated resistance, design of new ß-lactamase inhibitors (BLIs) is critical. Many high-resolution crystallographic structures of BL complexed with BLIs are available. However, their impact on BLI design is struggling to keep pace with novel and emerging variants. Small angle x-ray scattering (SAXS) in combination with molecular modeling is a useful tool to determine dynamic structures of macromolecules in solution. An important application of SAXS is to determine the conformational changes that occur when BLI bind to BL. To probe if conformational dynamics occur in class C cephalosporinases, we studied SAXS profiles of two clinically relevant class C ß-lactamases, Acinetobacter baumannii ADC-7 and Enterobacter cloacae P99 in apo format complexed with BLIs. Importantly, SAXS data analysis demonstrated that in solution, these representative class C enzymes remain monomeric and did not show the associated assemblies that were seen in various crystal structures. SAXS data acquired for ADC-7 and P99, in apo and inhibitor bound states, clearly showed that these enzymes undergo detectable conformational changes, and these class C ß-lactamases also close upon binding inhibitors as does BlaC. Further analysis revealed that addition of inhibitor led to the compacting of a range of residues around the active site, indicating that the conformational changes that both P99 and ADC-7 undergo are central to inhibitor recognition and efficacy. Our findings support the importance of exploring conformational changes using SAXS analysis in the design of future BLIs.Communicated by Ramaswamy H. Sarma.

9.
Antibiotics (Basel) ; 12(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37237794

RESUMEN

BACKGROUND: Ceftazidime-avibactam was approved by the FDA to treat infections caused by Enterobacterales carrying blaKPC-2. However, variants of KPC-2 with amino acid substitutions at position 179 have emerged and confer resistance to ceftazidime-avibactam. METHODS: The activity of imipenem-relebactam was assessed against a panel of 19 KPC-2 D179 variants. KPC-2 and the D179N and D179Y variants were purified for biochemical analyses. Molecular models were constructed with imipenem to assess differences in kinetic profiles. RESULTS: All strains were susceptible to imipenem-relebactam, but resistant to ceftazidime (19/19) and ceftazidime-avibactam (18/19). KPC-2 and the D179N variant hydrolyzed imipenem, but the D179N variant's rate was much slower. The D179Y variant was unable to turnover imipenem. All three ß-lactamases hydrolyzed ceftazidime at varying rates. The acylation rate of relebactam for the D179N variant was ~2.5× lower than KPC-2. Poor catalytic turnover by the D179Y variant precluded the determination of inhibitory kinetic parameters. Acyl-complexes with imipenem and ceftazidime were less prevalent with the D179N variant compared to the D179Y variant, supporting the kinetic observations that the D179Y variant was not as active as the D179N variant. Relebactam was slower to form an acyl-complex with the D179Y variant compared to avibactam. The D179Y model with imipenem revealed that the catalytic water molecule was shifted, and the carbonyl of imipenem was not within the oxyanion hole. Conversely in the D179N model, imipenem was oriented favorably for deacylation. CONCLUSIONS: Imipenem-relebactam overcame the resistance of the D179 variants, suggesting that this combination will be active against clinical isolates harboring these derivatives of KPC-2.

10.
Microbiol Spectr ; 11(3): e0464622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37074187

RESUMEN

The ADC (AmpC) ß-lactamase is universally present in the Acinetobacter baumannii chromosome, suggesting it may have a yet-to-be-identified cellular function. Using peptidoglycan composition analysis, we show that overexpressing the ADC-7 ß-lactamase in A. baumannii drives changes consistent with altered l,d-transpeptidase activity. Based on this, we tested whether cells overexpressing ADC-7 would exhibit new vulnerabilities. As proof of principle, a screen of transposon insertions revealed that an insertion in the distal 3' end of canB, encoding carbonic anhydrase, resulted in a significant loss of viability when the adc-7 gene was overexpressed. A canB deletion mutant exhibited a more pronounced loss of viability than the transposon insertion, and this became amplified when cells overexpressed ADC-7. Interestingly, overexpression of the OXA-23 or TEM-1 ß-lactamases also led to a pronounced loss of viability in cells with reduced carbonic anhydrase activity. In addition, we demonstrate that reduced CanB activity led to increased sensitivity to peptidoglycan synthesis inhibitors and to the carbonic anhydrase inhibitor ethoxzolamide. Furthermore, this strain exhibited a synergistic interaction with the peptidoglycan inhibitor fosfomycin and ethoxzolamide. Our results highlight the impact of ADC-7 overexpression on cell physiology and reveal that the essential carbonic anhydrase CanB may represent a novel target for antimicrobial agents that would exhibit increased potency against ß-lactamase-overexpressing A. baumannii. IMPORTANCE Acinetobacter baumannii has become resistant to all classes of antibiotics, with ß-lactam resistance responsible for the majority of treatment failures. New classes of antimicrobials are needed to treat this high-priority pathogen. This study had uncovered a new genetic vulnerability in ß-lactamase-expressing A. baumannii, where reduced carbonic anhydrase activity becomes lethal. Inhibitors of carbonic anhydrase could represent a new method for treating A. baumannii infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Etoxzolamida , Peptidoglicano/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Fenómenos Fisiológicos Celulares , Pruebas de Sensibilidad Microbiana
11.
Antimicrob Agents Chemother ; 67(1): e0093022, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36602311

RESUMEN

Design of novel ß-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-ß-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum ß-lactamase [ESBL]) ß-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to ß-lactamase inhibitor design.


Asunto(s)
Triazoles , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Ácidos Borónicos/farmacología , Ácidos Borónicos/química , Penicilinas , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
12.
mBio ; 13(3): e0179321, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35612361

RESUMEN

ß-Lactamases hydrolyze ß-lactam antibiotics and are major determinants of antibiotic resistance in Gram-negative pathogens. Enmetazobactam (formerly AAI101) and tazobactam are penicillanic acid sulfone (PAS) ß-lactamase inhibitors that differ by an additional methyl group on the triazole ring of enmetazobactam, rendering it zwitterionic. In this study, ultrahigh-resolution X-ray crystal structures and mass spectrometry revealed the mechanism of PAS inhibition of CTX-M-15, an extended-spectrum ß-lactamase (ESBL) globally disseminated among Enterobacterales. CTX-M-15 crystals grown in the presence of enmetazobactam or tazobactam revealed loss of the Ser70 hydroxyl group and formation of a lysinoalanine cross-link between Lys73 and Ser70, two residues critical for catalysis. Moreover, the residue at position 70 undergoes epimerization, resulting in formation of a d-amino acid. Cocrystallization of enmetazobactam or tazobactam with CTX-M-15 with a Glu166Gln mutant revealed the same cross-link, indicating that this modification is not dependent on Glu166-catalyzed deacylation of the PAS-acylenzyme. A cocrystal structure of enmetazobactam with CTX-M-15 with a Lys73Ala mutation indicates that epimerization can occur without cross-link formation and positions the Ser70 Cß closer to Lys73, likely facilitating formation of the Ser70-Lys73 cross-link. A crystal structure of a tazobactam-derived imine intermediate covalently linked to Ser70, obtained after 30 min of exposure of CTX-M-15 crystals to tazobactam, supports formation of an initial acylenzyme by PAS inhibitors on reaction with CTX-M-15. These data rationalize earlier results showing CTX-M-15 deactivation by PAS inhibitors to involve loss of protein mass, and they identify a distinct mechanism of ß-lactamase inhibition by these agents. IMPORTANCE ß-Lactams are the most prescribed antibiotic class for treating bacterial diseases, but their continued efficacy is threatened by bacterial strains producing ß-lactamase enzymes that catalyze their inactivation. The CTX-M family of ESBLs are major contributors to ß-lactam resistance in Enterobacterales, preventing effective treatment with most penicillins and cephalosporins. Combining ß-lactams with ß-lactamase inhibitors (BLIs) is a validated route to overcome such resistance. Here, we describe how exposure to enmetazobactam and tazobactam, BLIs based on a penicillanic acid sulfone (PAS) scaffold, leads to a protein modification in CTX-M-15, resulting in irremediable inactivation of this most commonly encountered member of the CTX-M family. High-resolution X-ray crystal structures showed that PAS exposure induces formation of a cross-link between Ser70 and Lys73, two residues critical to ß-lactamase function. This previously undescribed mechanism of inhibition furthers our understanding of ß-lactamase inhibition by classical PAS inhibitors and provides a basis for further, rational inhibitor development.


Asunto(s)
Sulbactam , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Lisina , Pruebas de Sensibilidad Microbiana , Serina , Sulbactam/farmacología , Tazobactam/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
13.
Antimicrob Agents Chemother ; 66(5): e0179021, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35435707

RESUMEN

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES ß-lactamases, intrinsic PDC and OXA ß-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES ß-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 µM, 23 ± 2 µM, and 21 ± 2 µM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Aminoácidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Combinación de Medicamentos , Humanos , Imipenem/farmacología , Imipenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Porinas/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Estados Unidos , beta-Lactamasas/metabolismo
14.
ACS Infect Dis ; 8(4): 811-824, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35353502

RESUMEN

To identify novel inhibitors of the carbapenemase New Delhi metallo-ß-lactamase (NDM) as possible therapeutic compounds, we conducted a high-throughput screen of a 43,358-compound library. One of these compounds, a 2-quinazolinone linked through a diacylhydrazine to a phenyl ring (QDP-1) (IC50 = 7.9 ± 0.5 µM), was characterized as a slow-binding reversible inhibitor (Kiapp = 4 ± 2 µM) with a noncompetitive mode of inhibition in which substrate and inhibitor enhance each other's binding affinity. These studies, along with differential scanning fluorimetry, zinc quantitation, and selectivity studies, support an allosteric mechanism of inhibition. Cotreatment with QDP-1 effectively lowers minimum inhibitory concentrations of carbapenems for a panel of resistant Escherichia coli and Klebsiella pneumoniae clinical isolates expressing NDM-1 but not for those expressing only serine carbapenemases. QDP-1 represents a novel allosteric approach for NDM drug development for potential use alone or with other NDM inhibitors to counter carbapenem resistance in enterobacterales.


Asunto(s)
Carbapenémicos , beta-Lactamasas , Carbapenémicos/química , Carbapenémicos/farmacología , Escherichia coli , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/metabolismo
15.
Antimicrob Agents Chemother ; 66(4): e0212421, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35311523

RESUMEN

ß-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent ß-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC ß-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.


Asunto(s)
Ceftazidima , Infecciones por Klebsiella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ceftazidima/farmacología , Combinación de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Imipenem/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae , Espectroscopía de Resonancia Magnética , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
16.
mBio ; 13(1): e0352921, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073757

RESUMEN

Mycobacterium abscessus (Mab) infections are a growing menace to the health of many patients, especially those suffering from structural lung disease and cystic fibrosis. With multidrug resistance a common feature and a growing understanding of peptidoglycan synthesis in Mab, it is advantageous to identify potent ß-lactam and ß-lactamase inhibitor combinations that can effectively disrupt cell wall synthesis. To improve existing therapeutic regimens to address serious Mab infections, we evaluated the ability of durlobactam (DUR), a novel diazobicyclooctane ß-lactamase inhibitor to restore in vitro susceptibilities in combination with ß-lactams and provide a biochemical rationale for the activity of this compound. In cell-based assays, susceptibility of Mab subsp. abscessus isolates to amoxicillin (AMOX), imipenem (IMI), and cefuroxime (CXM) was significantly enhanced with the addition of DUR. The triple drug combinations of CXM-DUR-AMOX and IMI-DUR-AMOX were most potent, with MIC ranges of ≤0.06 to 1 µg/mL and an MIC50/MIC90 of ≤0.06/0.25 µg/mL, respectively. We propose a model by which this enhancement may occur, DUR potently inhibited the ß-lactamase BlaMab with a relative Michaelis constant (Ki app) of 4 × 10-3 ± 0.8 × 10-3 µM and acylation rate (k2/K) of 1 × 107 M-1 s-1. Timed mass spectrometry captured stable formation of carbamoyl-enzyme complexes between DUR and LdtMab2-4 and Mab d,d-carboxypeptidase, potentially contributing to the intrinsic activity of DUR. Molecular modeling showed unique and favorable interactions of DUR as a BlaMab inhibitor. Similarly, modeling showed how DUR might form stable Michaelis-Menten complexes with LdtMab2-4 and Mab d,d-carboxypeptidase. The ability of DUR combined with amoxicillin or cefuroxime and imipenem to inactivate multiple targets such as d,d-carboxypeptidase and LdtMab2,4 supports new therapeutic approaches using ß-lactams in eradicating Mab. IMPORTANCE Durlobactam (DUR) is a potent inhibitor of BlaMab and provides protection of amoxicillin and imipenem against hydrolysis. DUR has intrinsic activity and forms stable acyl-enzyme complexes with LdtMab2 and LdtMab4. The ability of DUR to protect amoxicillin and imipenem against BlaMab and its intrinsic activity along with the dual ß-lactam target redundancy can explain the rationale behind the potent activity of this combination.


Asunto(s)
Mycobacterium abscessus , beta-Lactamas , Humanos , beta-Lactamas/farmacología , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/farmacología , Cefuroxima/farmacología , Pruebas de Sensibilidad Microbiana , Imipenem/farmacología , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , beta-Lactamasas
17.
mBio ; 12(6): e0313721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34872351

RESUMEN

ß-Lactamase expression is the major mechanism of resistance to penicillins, cephalosporins, and carbapenems in the multidrug-resistant (MDR) bacterium Acinetobacter baumannii. In fact, stable high-level expression of at least one ß-lactamase has been rapidly increasing and reported to occur in up to 98.5% of modern A. baumannii isolates recovered in the clinic. Moreover, the OXA-51 ß-lactamase is universally present in the A. baumannii chromosome, suggesting it may have a cellular function beyond antibiotic resistance. However, the consequences associated with OXA ß-lactamase overexpression on A. baumannii physiology are not well understood. Using peptidoglycan composition analysis, we show that overexpressing the OXA-23 ß-lactamase in A. baumannii drives significant collateral changes with alterations consistent with increased amidase activity. Consequently, we predicted that these changes create new cellular vulnerabilities. As proof of principle, a small screen of random transposon insertions revealed three genes, where mutations resulted in a greater than 19-fold loss of viability when OXA-23 was overexpressed. The identified genes remained conditionally essential even when a catalytically inactive OXA-23 ß-lactamase was overexpressed. In addition, we demonstrated a synergistic lethal relationship between OXA-23 overexpression and a CRISPR interference (CRISPRi) knockdown of the essential peptidoglycan synthesis enzyme MurA. Last, OXA-23 overexpression sensitized cells to two inhibitors of peptidoglycan synthesis, d-cycloserine and fosfomycin. Our results highlight the impact of OXA-23 hyperexpression on peptidoglycan integrity and reveal new genetic vulnerabilities, which may represent novel targets for antimicrobial agents specific to MDR A. baumannii and other OXA ß-lactamase-overexpressing Enterobacteriaceae, while having no impact on the normal flora. IMPORTANCE Acinetobacter baumannii has become a serious pathogen in both hospital and community settings. The ß-lactam class of antibiotics is a primary treatment option for A. baumannii infections, and expression of ß-lactamases is the most frequent mechanism of resistance in this bacterium. New approaches to treating multidrug-resistant A. baumannii strains are needed. In this study, we demonstrate that overexpressing the OXA-23 ß-lactamase leads to significant collateral changes, where peptidoglycan structure is altered. We have identified genes that become selectively essential in OXA-23-expressing strains and confirmed the relationship between altered peptidoglycan and OXA-23 expression by demonstrating that OXA-23 overexpression sensitizes cells to genetic and chemical inhibition of peptidoglycan synthesis. This work paves the way for the identification of new antimicrobial targets, where inhibitors would selectively kill ß-lactamase-expressing strains.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mutación , Peptidoglicano/biosíntesis , beta-Lactamasas/metabolismo
18.
Front Microbiol ; 12: 720036, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970229

RESUMEN

The rise of multidrug resistant (MDR) Gram-negative bacteria has accelerated the development of novel inhibitors of class A and C ß-lactamases. Presently, the search for novel compounds with new mechanisms of action is a clinical and scientific priority. To this end, we determined the 2.13-Å resolution crystal structure of S02030, a boronic acid transition state inhibitor (BATSI), bound to MOX-1 ß-lactamase, a plasmid-borne, expanded-spectrum AmpC ß-lactamase (ESAC) and compared this to the previously reported aztreonam (ATM)-bound MOX-1 structure. Superposition of these two complexes shows that S02030 binds in the active-site cavity more deeply than ATM. In contrast, the SO3 interactions and the positional change of the ß-strand amino acids from Lys315 to Asn320 were more prominent in the ATM-bound structure. MICs were performed using a fixed concentration of S02030 (4 µg/ml) as a proof of principle. Microbiological evaluation against a laboratory strain of Escherichia coli expressing MOX-1 revealed that MICs against ceftazidime are reduced from 2.0 to 0.12 µg/ml when S02030 is added at a concentration of 4 µg/ml. The IC50 and K i of S02030 vs. MOX-1 were 1.25 ± 0.34 and 0.56 ± 0.03 µM, respectively. Monobactams such as ATM can serve as informative templates for design of mechanism-based inhibitors such as S02030 against ESAC ß-lactamases.

19.
Eur J Med Chem ; 220: 113436, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33933754

RESUMEN

Serious infections caused by multidrug-resistant (MDR) organisms (Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) present a critical need for innovative drug development. Herein, we describe the preclinical evaluation of YU253911, 2, a novel γ-lactam siderophore antibiotic with potent antimicrobial activity against MDR Gram-negative pathogens. Penicillin-binding protein (PBP) 3 was shown to be a target of 2 using a binding assay with purified P. aeruginosa PBP3. The specific binding interactions with P. aeruginosa were further characterized with a high-resolution (2.0 Å) X-ray structure of the compound's acylation product in P. aeruginosa PBP3. Compound 2 was shown to have a concentration >1 µg/ml at the 6 h time point when administered intravenously or subcutaneously in mice. Employing a meropenem resistant strain of P. aeruginosa, 2 was shown to have dose-dependent efficacy at 50 and 100 mg/kg q6h dosing in a mouse thigh infection model. Lastly, we showed that a novel γ-lactam and ß-lactamase inhibitor (BLI) combination can effectively lower minimum inhibitory concentrations (MICs) against carbapenem resistant Acinetobacter spp. that demonstrated decreased susceptibility to 2 alone.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Lactamas/farmacología , Sideróforos/farmacología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Lactamas/síntesis química , Lactamas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Sideróforos/síntesis química , Sideróforos/química , Relación Estructura-Actividad
20.
Artículo en Inglés | MEDLINE | ID: mdl-33468463

RESUMEN

Metallo-ß-lactamases (MBLs) are a growing clinical threat because they inactivate nearly all ß-lactam-containing antibiotics, and there are no clinically available inhibitors. A significant number of variants have already emerged for each MBL subfamily. To understand the evolution of imipenemase (IMP) genes (blaIMP) and their clinical impact, 20 clinically derived IMP-1 like variants were obtained using site-directed mutagenesis and expressed in a uniform genetic background in Escherichia coli strain DH10B. Strains of IMP-1-like variants harboring S262G or V67F substitutions exhibited increased resistance toward carbapenems and decreased resistance toward ampicillin. Strains expressing IMP-78 (S262G/V67F) exhibited the largest changes in MIC values compared to IMP-1. In order to understand the molecular mechanisms of increased resistance, biochemical, biophysical, and molecular modeling studies were conducted to compare IMP-1, IMP-6 (S262G), IMP-10 (V67F), and IMP-78 (S262G/V67F). Finally, unlike most New Delhi metallo-ß-lactamase (NDM) and Verona integron-encoded metallo-ß-lactamase (VIM) variants, the IMP-1-like variants do not confer any additional survival advantage if zinc availability is limited. Therefore, the evolution of MBL subfamilies (i.e., IMP-6, -10, and -78) appears to be driven by different selective pressures.


Asunto(s)
Carbapenémicos , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA