Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
JCO Precis Oncol ; 8: e2200667, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38237097

RESUMEN

PURPOSE: At the primary analysis, the APHINITY trial reported a statistically significant but modest benefit of adding pertuzumab to standard adjuvant chemotherapy plus trastuzumab in patients with histologically confirmed human epidermal growth factor receptor 2 (HER2)-positive early-stage breast cancer. This study evaluated whether the 80-gene molecular subtyping signature (80-GS) could identify patients within the APHINITY population who derive the most benefit from dual anti-HER2 therapy. METHODS: In a nested case-control study design of 1,023 patients (matched event to control ratio of 3:1), the 80-GS classified breast tumors into functional luminal type, HER2 type, or basal type. Additionally, 80-GS distinguished tumor subtypes that exhibited a single-dominant functional pathway versus tumors with multiple activated pathways. The primary end point was invasive disease-free survival (IDFS). Hazard ratios (HRs) were evaluated by Cox regression. After excluding patients without appropriate consent and those with missing data, 964 patients were included. RESULTS: The 80-GS classified 50% (n = 479) of tumors as luminal type, 28% (n = 275) as HER2 type, and 22% (n = 209) as basal type. Most luminal-type tumors (86%) displayed a single-activated pathway, whereas 49% of HER2-type and 42% of basal-type tumors were dual activated. There was no significant difference in IDFS among different conventional 80-GS subtypes (single- and dual-activated subtypes combined). However, basal single-subtype tumors were significantly more likely to have an IDFS event (hazard ratio, 1.69 [95% CI, 1.12 to 2.54]) compared with other subtypes. HER2 single-subtype tumors displayed a trend toward greater beneficial effect on the addition of pertuzumab (hazard ratio, 0.56 [95% CI, 0.27 to 1.16]) compared with all other subtypes. CONCLUSION: The 80-GS identified subgroups of histologically confirmed HER2-positive tumors with distinct biological characteristics. Basal single-subtype tumors exhibit an inferior prognosis compared with other subgroups and may be candidates for additional therapeutic strategies. Preliminary results suggest patients with HER2-positive, genomically HER2 single-subtype tumors may particularly benefit from added pertuzumab, which warrants further investigation.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama , Humanos , Femenino , Estudios de Casos y Controles , Trastuzumab/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
2.
Breast Cancer Res ; 25(1): 117, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794508

RESUMEN

BACKGROUND: Despite major improvements in treatment of HER2-positive metastatic breast cancer (MBC), only few patients achieve complete remission and remain progression free for a prolonged time. The tumor immune microenvironment plays an important role in the response to treatment in HER2-positive breast cancer and could contain valuable prognostic information. Detailed information on the cancer-immune cell interactions in HER2-positive MBC is however still lacking. By characterizing the tumor immune microenvironment in patients with HER2-positive MBC, we aimed to get a better understanding why overall survival (OS) differs so widely and which alternative treatment approaches may improve outcome. METHODS: We included all patients with HER2-positive MBC who were treated with trastuzumab-based palliative therapy in the Netherlands Cancer Institute between 2000 and 2014 and for whom pre-treatment tissue from the primary tumor or from metastases was available. Infiltrating immune cells and their spatial relationships to one another and to tumor cells were characterized by immunohistochemistry and multiplex immunofluorescence. We also evaluated immune signatures and other key pathways using next-generation RNA-sequencing data. With nine years median follow-up from initial diagnosis of MBC, we investigated the association between tumor and immune characteristics and outcome. RESULTS: A total of 124 patients with 147 samples were included and evaluated. The different technologies showed high correlations between each other. T-cells were less prevalent in metastases compared to primary tumors, whereas B-cells and regulatory T-cells (Tregs) were comparable between primary tumors and metastases. Stromal tumor-infiltrating lymphocytes in general were not associated with OS. The infiltration of B-cells and Tregs in the primary tumor was associated with unfavorable OS. Four signatures classifying the extracellular matrix of primary tumors showed differential survival in the population as a whole. CONCLUSIONS: In a real-world cohort of 124 patients with HER2-positive MBC, B-cells, and Tregs in primary tumors are associated with unfavorable survival. With this paper, we provide a comprehensive insight in the tumor immune microenvironment that could guide further research into development of novel immunomodulatory strategies.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Receptor ErbB-2/metabolismo , Linfocitos T Reguladores , Trastuzumab , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica , Microambiente Tumoral
3.
JCO Precis Oncol ; 7: e2200670, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37738542

RESUMEN

PURPOSE: Oligometastatic breast cancer (OMBC) has a more favorable outcome than widespread metastatic breast cancer. Some patients with OMBC achieve long-term remission if treated with multimodality therapy, including systemic and locally ablative therapies. However, not all patients with OMBC benefit from such treatment, while all experience toxicity. To explore biomarkers identifying patients with OMBC and potential long-term survival, we compared tumor-immune characteristics of patients with OMBC and long-term versus shorter-term survival. MATERIALS AND METHODS: We collected tumor tissue of 97 patients with de novo OMBC (≤5 metastases) via the Dutch nationwide cancer and pathology registries using a case-control design. Long-term survivors (LTS) were defined as patients alive ≥10 years since OMBC diagnosis. Fifty-five LTS and 42 shorter-term survivors (STS) were included. Median follow-up was 15 years (IQR, 14-16). Tumor characteristics and infiltrating immune cells were assessed by immunohistochemistry and next-generation RNA-sequencing. Association of the resulting 52 biomarkers with long-term survival was assessed using logistic regression. Associations with survival within LTS were assessed using Cox-proportional hazards modeling. P values were adjusted for multiple hypothesis testing. RESULTS: Most patients had estrogen receptor (ER)-positive OMBC (n = 86; 89%) and 23 (24%) had human epidermal growth factor receptor 2-positive disease. ER positivity in primary tumors distinguished LTS from STS. In addition, extracellular matrix (ECM)2-low and ECM4-high distinguished between long-term and shorter-term survival. Immune levels in the primary tumor did not associate with LTS. However, within the LTS subset, higher immune levels associated with improved progression-free survival. CONCLUSION: We identified tumor and ECM features in the primary tumor of patients with de novo OMBC that were associated with long-term survival. Our data should be validated in other patients with OMBC before they can be used in clinical practice.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Microambiente Tumoral , Secuenciación de Nucleótidos de Alto Rendimiento , Supervivencia sin Progresión , ARN
4.
Breast Cancer Res Treat ; 195(3): 263-274, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35984580

RESUMEN

PURPOSE: BluePrint (BP) is an 80-gene molecular subtyping test that classifies early-stage breast cancer (EBC) into Basal, Luminal, and HER2 subtypes. In most cases, breast tumors have one dominant subtype, representative of a single activated pathway. However, some tumors show a statistically equal representation of more than one subtype, referred to as dual subtype. This study aims to identify and examine dual subtype tumors by BP to understand their biology and possible implications for treatment guidance. METHODS: The BP scores of over 15,000 tumor samples from EBC patients were analyzed, and the differences between the highest and the lowest scoring subtypes were calculated. Based upon the distribution of the differences between BP scores, a threshold was determined for each subtype to identify dual versus single subtypes. RESULTS: Approximately 97% of samples had one single activated BluePrint molecular subtype, whereas ~ 3% of samples were classified as BP dual subtype. The most frequently occurring dual subtypes were the Luminal-Basal-type and Luminal-HER2-type. Luminal-Basal-type displays a distinct biology from the Luminal single type and Basal single type. Burstein's classification of the single and dual Basal samples showed that the Luminal-Basal-type is mostly classified as 'luminal androgen receptor' and 'mesenchymal' subtypes, supporting molecular evidence of AR activation in the Luminal-Basal-type tumors. Tumors classified as Luminal-HER2-type resemble features of both Luminal-single-type and HER2-single-type. However, patients with dual Luminal-HER2-type have a lower pathological complete response after receiving HER2-targeted therapies in addition to chemotherapy in comparison with patients with a HER2-single-type. CONCLUSION: This study demonstrates that BP identifies tumors with two active functional pathways (dual subtype) with specific transcriptional characteristics and highlights the added value of distinguishing BP dual from single subtypes as evidenced by distinct treatment response rates.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Femenino , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo
5.
Genes Chromosomes Cancer ; 61(3): 148-160, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34841595

RESUMEN

MammaPrint® (MP) is a 70-gene signature that stratifies early-stage breast cancer patients into low- and high risk of distant relapse. Further stratification of MP risk results identifies four risk subgroups, ultra-low (UL), low, high 1, and high 2, with specific prognostic and predictive outcomes. BluePrint® (BP) is an 80-gene signature that classifies breast tumors as basal, luminal, or HER2 molecular subtype. To gain insight into their biological significance, we annotated the MP 70- and BP 80-genes with respect to the 10 hallmarks of cancer (HoC). Furthermore, we related gene expression profiles of the extreme ends of the MP low- and high-risk patients (here called, ultra-low (UL) and ultra-high (UH) or High2, respectively), to the 10 HoC per BP subtype by differential gene expression and pathway analysis. MP and BP gene functions reflected all 10 HoCs. Most MP and BP genes were associated with sustaining proliferative signaling, followed by genome instability and mutation categories. Based on the gene expression profiles, UL and UH subgroup pathways were down -or upregulated, respectively, reflecting proliferative and metastatic features, such as G2M checkpoint, DNA repair, oxidative phosphorylation, immune invasion, PI3K/AKT/mTOR signaling, and hypoxia pathways. Notably, the UH HER2-type was enriched in several immune signaling pathways, such as IL2/STAT5 signaling and TNFα signaling via NFκB. Our results show that MP and BP gene signatures represent and capture all 10 HoCs and highlight underlying biological processes of MP extreme samples, which might guide treatment decisions as the signature captures the full spectrum of early breast cancers.


Asunto(s)
Neoplasias de la Mama , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Bases de Datos Genéticas , Femenino , Humanos , Pronóstico , Transducción de Señal/genética
6.
PLoS One ; 15(5): e0233394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32453735

RESUMEN

Chromodomain helicase DNA-binding (CHD) chromatin remodelers regulate transcription and DNA repair. They govern cell-fate decisions during embryonic development and are often deregulated in human pathologies. Chd1-8 show upon germline disruption pronounced, often developmental lethal phenotypes. Here we show that contrary to Chd1-8 disruption, Chd9-/-animals are viable, fertile and display no developmental defects or disease predisposition. Germline deletion of Chd9 only moderately affects gene expression in tissues and derived cells, whereas acute depletion in human cancer cells elicits more robust changes suggesting that CHD9 is a highly context-dependent chromatin regulator that, surprisingly, is dispensable for mouse development.


Asunto(s)
ADN Helicasas/genética , Transactivadores/genética , Animales , Línea Celular , Células Cultivadas , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Mutación de Línea Germinal , Humanos , Células K562 , Ratones , Células Madre Embrionarias de Ratones/citología
7.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271879

RESUMEN

We have generated mouse models of malignant mesothelioma (MM) based upon disruption of the Bap1, Nf2, and Cdkn2ab tumor suppressor loci in various combinations as also frequently observed in human MM. Inactivation of all three loci in the mesothelial lining of the thoracic cavity leads to a highly aggressive MM that recapitulates the histological features and gene expression profile observed in human patients. The tumors also show a similar inflammatory phenotype. Bap1 deletion alone does not cause MM but dramatically accelerates MM development when combined with Nf2 and Cdkn2ab (hereafter BNC) disruption. The accelerated tumor development is accompanied by increased Polycomb repression and EZH2-mediated redistribution of H3K27me3 toward promoter sites with concomitant activation of PI3K and MAPK pathways. Treatment of BNC tumor-bearing mice with cisplatin and pemetrexed, the current frontline treatment, prolongs survival. This makes the autochthonous mouse model described here very well suited to explore the pathogenesis of MM and validate new treatment regimens for MM, including immunotherapy.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Eliminación de Gen , Mesotelioma Maligno/metabolismo , Neurofibromina 2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inmunofenotipificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transcripción Genética/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
8.
Cell Rep ; 27(11): 3345-3358.e4, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189116

RESUMEN

Small-cell lung cancer is the most aggressive type of lung cancer, characterized by a remarkable response to chemotherapy followed by development of resistance. Here, we describe SCLC subtypes in Mycl- and Nfib-driven GEMM that include CDH1-high peripheral primary tumor lesions and CDH1-negative, aggressive intrapulmonary metastases. Cisplatin treatment preferentially eliminates the latter, thus revealing a striking differential response. Using a combined transcriptomic and proteomic approach, we find a marked reduction in proliferation and metabolic rewiring following cisplatin treatment and present evidence for a distinctive metabolic and structural profile defining intrinsically resistant populations. This offers perspectives for effective combination therapies that might also hold promise for treating human SCLC, given the very similar response of both mouse and human SCLC to cisplatin.


Asunto(s)
Carcinoma de Células Pequeñas/genética , Resistencia a Antineoplásicos , Heterogeneidad Genética , Neoplasias Pulmonares/genética , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Células Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
9.
Nat Commun ; 10(1): 1425, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926782

RESUMEN

Cdkn2ab knockout mice, generated from 129P2 ES cells develop skin carcinomas. Here we show that the incidence of these carcinomas drops gradually in the course of backcrossing to the FVB/N background. Microsatellite analyses indicate that this cancer phenotype is linked to a 20 Mb region of 129P2 chromosome 15 harboring the Wnt7b gene, which is preferentially expressed from the 129P2 allele in skin carcinomas and derived cell lines. ChIPseq analysis shows enrichment of H3K27-Ac, a mark for active enhancers, in the 5' region of the Wnt7b 129P2 gene. The Wnt7b 129P2 allele appears sufficient to cause in vitro transformation of Cdkn2ab-deficient cell lines primarily through CDK6 activation. These results point to a critical role of the Cdkn2ab locus in keeping the oncogenic potential of physiological levels of WNT signaling in check and illustrate that GWAS-based searches for cancer predisposing allelic variants can be enhanced by including defined somatically acquired lesions as an additional input.


Asunto(s)
Carcinogénesis/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Variación Genética , Neoplasias Cutáneas/genética , Vía de Señalización Wnt/genética , Alelos , Animales , Emparejamiento Base/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromosomas de los Mamíferos/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/metabolismo , Ligamiento Genético , Pulmón/patología , Metaplasia , Ratones Noqueados , Factor de Crecimiento Derivado de Plaquetas/metabolismo
10.
Int J Cancer ; 145(4): 941-951, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30694527

RESUMEN

Two percent of patients with Wilms tumors have a positive family history. In many of these cases the genetic cause remains unresolved. By applying germline exome sequencing in two families with two affected individuals with Wilms tumors, we identified truncating mutations in TRIM28. Subsequent mutational screening of germline and tumor DNA of 269 children affected by Wilms tumor was performed, and revealed seven additional individuals with germline truncating mutations, and one individual with a somatic truncating mutation in TRIM28. TRIM28 encodes a complex scaffold protein involved in many different processes, including gene silencing, DNA repair and maintenance of genomic integrity. Expression studies on mRNA and protein level showed reduction of TRIM28, confirming a loss-of-function effect of the mutations identified. The tumors showed an epithelial-type histology that stained negative for TRIM28 by immunohistochemistry. The tumors were bilateral in six patients, and 10/11 tumors are accompanied by perilobar nephrogenic rests. Exome sequencing on eight tumor DNA samples from six individuals showed loss-of-heterozygosity (LOH) of the TRIM28-locus by mitotic recombination in seven tumors, suggesting that TRIM28 functions as a tumor suppressor gene in Wilms tumor development. Additionally, the tumors showed very few mutations in known Wilms tumor driver genes, suggesting that loss of TRIM28 is the main driver of tumorigenesis. In conclusion, we identified heterozygous germline truncating mutations in TRIM28 in 11 children with mainly epithelial-type Wilms tumors, which become homozygous in tumor tissue. These data establish TRIM28 as a novel Wilms tumor predisposition gene, acting as a tumor suppressor gene by LOH.


Asunto(s)
Haploinsuficiencia/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Tumor de Wilms/genética , Carcinogénesis/genética , Preescolar , ADN de Neoplasias/genética , Femenino , Genes del Tumor de Wilms/fisiología , Predisposición Genética a la Enfermedad/genética , Genotipo , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Lactante , Neoplasias Renales/genética , Mutación con Pérdida de Función/genética , Pérdida de Heterocigocidad/genética , Masculino , Secuenciación del Exoma/métodos
11.
Cancer Cell ; 30(4): 519-532, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27728803

RESUMEN

Lung squamous cell carcinoma (LSCC) is a devastating malignancy with no effective treatments, due to its complex genomic profile. Therefore, preclinical models mimicking its salient features are urgently needed. Here we describe mouse models bearing various combinations of genetic lesions predominantly found in human LSCC. We show that SOX2 but not FGFR1 overexpression in tracheobronchial basal cells combined with Cdkn2ab and Pten loss results in LSCC closely resembling the human counterpart. Interestingly, Sox2;Pten;Cdkn2ab mice develop LSCC with a more peripheral location when Club or Alveolar type 2 (AT2) cells are targeted. Our model highlights the essential role of SOX2 in commanding the squamous cell fate from different cells of origin and represents an invaluable tool for developing better intervention strategies.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factores de Transcripción SOXB1/genética , Animales , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transcripción Genética , Microambiente Tumoral
12.
Cell Rep ; 16(3): 631-43, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27373156

RESUMEN

Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1)-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factores de Transcripción NFI/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Animales , Cadherinas/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Metástasis de la Neoplasia/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA