Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(26): 11120-11132, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38887942

RESUMEN

In this study, three different solvent systems have been employed to investigate the effect of reaction parameters on the synthesis of four alkaline earth metal-based MOFs namely [Ca(0.5 1,4-phenyl diacetic acid)2(H2O)DMF]∞ (Ca-MOF-1), [Ca(1,4-naphthalene dicarboxylate)DMF]∞ (Ca-MOF-2), [Ca2(0.5 1,2,4,5-benzene tetracarboxylate)2(H2O)3DMF]∞ (Ca-MOF-3) and [Ca2(2,6-naphthalene dicarboxylate)2(H2O)6]∞ (Ca-MOF-4). The crystal structures of these four MOFs have been resolved through single crystal X-ray analysis and the bulk phase purity of these MOFs was assessed using PXRD and FT-IR analysis. To check the stability of these MOFs, thermogravimetric analysis (TGA) was carried out. To analyze the robustness of these MOFs, the PXRD of the samples was also collected at different pH levels. These MOFs were further explored as Lewis acid catalysts for the alcoholysis of epoxides and the activity of these catalysts depend on the open metal sites present in the MOFs. The catalytic activity follows the order: Ca-MOF-2 > Ca-MOF-4 > Ca-MOF-1 > Ca-MOF-3. The activity was also checked with various epoxide substrates using Ca-MOF-2. Density functional theory (DFT) calculations also support this trend with the help of the thermodynamic feasibility of epoxide binding, considering model MOF structures. The weak interaction between the epoxide oxygen and the metal centre of the most stable MOF structure has also been clarified by computational studies.

2.
ACS Appl Mater Interfaces ; 16(22): 28423-28434, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767841

RESUMEN

The eminence of transitioning from traditional fossil fuel-based energy resources to renewable and sustainable energy sources is most evidently crucial. The potential of hydrogen as an alternative energy source has specifically focuses the electrocatalytic water splitting (EWS) as a promising technique for generating hydrogen. Development of efficient electrocatalysts to facilitate the EWS process while rationalizing the limitations of noble metal catalysts like platinum has become one of the daunting tasks. Consequently, porous functional materials such as metal complexes (MCs) and graphene oxide (GO) can act as potential catalysts for EWS. Therefore, a composite of GO and a mononuclear bismuth metal complex is synthesized through in situ facile synthesis, which is further utilized as an efficient electrocatalyst for the hydrogen evolution reaction (HER). Several potential electrocatalytic MC@GO composite (BMGO-3,5,7) materials were prepared with compositional variation of GO (3, 5, and 7 wt %). The experimental results demonstrate that the BMGO5 composite exhibits excellent HER activity with a low overpotential value of 105 mV at 10 mA cm-2 and a low Tafel slope of 44 mV dec-1 in 1 M KOH solution. Furthermore, a comprehensive investigation on the potentiality of the BMC-GO composite for hydrogen evolution from river water splitting was performed in order to address the issue of freshwater depletion. Inclusion of a mononuclear MC for facile synthesis of functional GO-based efficient electrocatalyst material is very scanty in the literature. This unique approach could assist future research endeavors toward designing efficient electrocatalysts for sustainable renewable energy generation. This is one of the first of its kind, where mononuclear MCs were utilized to develop GO-based functional composite materials for efficient electrocatalysis toward sustainable renewable energy generation.

3.
ACS Appl Mater Interfaces ; 14(18): 20907-20918, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35476926

RESUMEN

We report a Ni-MOF (nickel metal-organic framework), Ni-SIP-BPY, synthesized by using two linkers 5-sulfoisophthalic acid (SIP) and 4,4'-bipyridine (BPY) simultaneously. It displays an orthorhombic crystal system with the Ama2 space group: a = 31.425 Å, b = 19.524 Å, c = 11.2074 Å, α = 90°, ß = 90°, γ = 90°, and two different types of nickel(II) centers. Interestingly, Ni-SIP-BPY exhibits excellent sensitivity (limit of detection, 87 ppb) and selectivity toward the 2,4,6-trinitrophenol (TNP)-like mutagenic environmental toxin in the pool of its other congeners via "turn-off" fluorescence response by the synergism of resonance energy transfer, photoinduced electron transfer, intermolecular charge transfer, π-π interactions, and competitive absorption processes. Experimental studies along with corroborated theoretical experimentation, vide density functional theory studies, shed light on determining the plausible mechanistic pathway in selective TNP detection, which is highly beneficial in the context of homeland security perspective. Along with the sensing of nitroaromatic explosives, the moderately low band gap and the p-type semiconducting behavior of Ni-SIP-BPY make it suitable as a photoanode material for visible-light-driven water splitting. Highly active surface functionalities and sufficient conduction band minima effectively reduce the water and result in a seven times higher photocurrent density under visible-light illumination.

4.
RSC Adv ; 12(15): 9139-9153, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424851

RESUMEN

This review contains up-to-date knowledge and recent advancements on the essentiality, sources, and toxicological profile of nickel and its different compounds. Nickel is a recognized essential element for several important biological processes like the healthy growth of plants, animals, and soil/water microbes; though an excess amount of nickel intoxicates flora and fauna. Nickel is found to affect the photosynthetic function of higher plants; it can severely degrade soil fertility and causes many chronic diseases in humans. Due to the huge growth in the nickel industry and consumption of nickel-containing products, environmental pollution has become inevitable by the element nickel and also varieties of its by-products through all the phases of making, utilization and dumping. We have focused on the importance of agenda 2030 (UN 17 SDGs) during the preparation of the write-up and have highlighted goals 3, 6, 8, 9, 11, 12, 13, 14, and 15 by elaborately discussing associated points. The plausible molecular mechanism of nickel toxicity is presented in simple diagrams. The article elaborates on possible methods for remediation of nickel toxicity and the treatment of nickel dermatitis and nickel cancer. Recent advancements in the understanding of the dual aspects of nickel as beneficial and a carcinogen are the key subject of this article.

5.
Chem Commun (Camb) ; 58(21): 3429-3460, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35234753

RESUMEN

The introduction of organic functionalities into porous inorganic materials not only makes the resulting hybrid porous framework to be more flexible and hydrophobic, but also provides additional scope for anchoring metal binding sites, which is beneficial for different frontline applications. Furthermore, the nanoscale porosity and high surface area of these organic-inorganic hybrid materials offer a better dispersion of active sites, which greatly enhances their application potential in adsorption, sensing, drug-delivery, energy storage, optoelectronics, light harvesting and catalysis. Easy post-synthetic functionalization of these hybrid materials has widened their application potential. Herein, we highlight several important synthetic strategies to design a wide range of organic-inorganic hybrid porous materials starting from the respective molecular precursors and their task-specific applications in energy and environmental research. We also outline the recent developments in their respective application areas together with various challenges that need to be overcome.

6.
ACS Appl Mater Interfaces ; 13(34): 40157-40171, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415715

RESUMEN

Ecofriendly routes for the synthesis of carbamates and carbonylative coupling products such as benzyl formate derivatives are very demanding for both academia and industries. Foreseeing a sustainable green future, we systematically analyzed the synthesis history of both these chemicals, mentioning their pros and cons. As a step towards green chemistry, here we have optimized the reaction conditions for the synthesis of various benzyl formates from corresponding benzyl halides and carbamates from substituted anilines and alkyl halides catalyzed by Ni(0) nanoparticles (NPs) immobilized over amine-functionalized ordered mesoporous SBA-15 material in the presence of CO2 as C1 source. This spotlight on applications is aimed to provide a clear outlook to date regarding the gradual progress in the synthesis of both these aforementioned chemicals and finally addresses further efforts for overcoming the current challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA