Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853987

RESUMEN

Infection with clade I Mpox virus (MPXV) results in adverse pregnancy outcomes, yet the potential for vertical transmission resulting in fetal harm with clade IIb MPXV, the clade that is currently circulating in the Western Hemisphere, remains unknown. We established a rhesus macaque model of vertical MPXV transmission with early gestation inoculation. Three pregnant rhesus macaques were inoculated intradermally with 1.5 × 10^5 plaque forming units (PFU) of clade IIb MPXV near gestational day (GD) 30 and animals were monitored for viremia and maternal and fetal well-being. Animals were euthanized to collect tissues at 5, 14, or 25 days post-inoculation (dpi). Tissues were evaluated for viral DNA (vDNA) loads, infectious virus titers, histopathology, MPXV mRNA and protein localization, as well as MPXV protein co-localization with placental cells including, Hofbauer cells, mesenchymal stromal cells, endothelial cells, and trophoblasts. vDNA was detected in maternal blood and skin lesions by 5 dpi. Lack of fetal heartbeat was observed at 14 or 25 dpi for two dams indicating fetal demise; the third dam developed significant vaginal bleeding at 5 dpi and was deemed an impending miscarriage. vDNA was detected in placental and fetal tissue in both fetal demise cases. MPXV localized to placental villi by ISH and IHC. Clade IIb MPXV infection in pregnant rhesus macaques results in vertical transmission to the fetus and adverse pregnancy outcomes, like clade I MPXV. Further studies are needed to determine whether antiviral therapy with tecovirimat will prevent vertical transmission and improve pregnancy outcomes. One Sentence Summary: Clade IIb Mpox virus infection of pregnant rhesus macaques results in vertical transmission from mother to fetus and adverse pregnancy outcomes.

2.
Front Immunol ; 14: 1267638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809089

RESUMEN

Introduction: Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods: Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results: Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion: Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Animales , Humanos , Macaca mulatta , Epítopos
3.
Funct Plant Biol ; 50(11): 850-869, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37757867

RESUMEN

Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.


Asunto(s)
Nanopartículas , Plantas , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Plantas/metabolismo , Estrés Fisiológico
4.
Funct Plant Biol ; 50(2): 160-182, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36031595

RESUMEN

The HAK (High-affinity K+ ) family members mediate K+ transport that confers normal plant growth and resistance against unfavourable environmental conditions. Rice (Oryza sativa L.) HAK transporters have been extensively investigated for phylogenetic analyses with other plants species with very few of them functionally characterised. But very little information is known about their evolutionary aspects, overall structural, functional characterisation, and global expression pattern of the complete HAK family members in response to salt stress. In this study, 27 rice transporters were phylogenetically clustered with different dicot and monocot family members. Subsequently, the exon-intron structural patterns, conserved motif analyses, evolutionary divergence based different substitution matrix, orthologous-paralogous relationships were studied elaborately. Structural characterisations included a comparative study of secondary and tertiary structure, post-translational modifications, correspondence analyses, normal mode analyses, K+ /Na+ binding affinities of each of the OsHAK gene members. Global expression profile under salt stress showed clade-specific expression pattern of the proteins. Additionally, five OsHAK genes were chosen for further expression analyses in root and shoot tissues of two rice varieties during short-term salinity in the presence and absence of exogenous spermidine. All the information can be used as first-hand data for dissecting the administrative role of rice HAK transporters under various abiotic stresses.


Asunto(s)
Oryza , Espermidina , Espermidina/farmacología , Espermidina/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Estrés Salino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
5.
Planta ; 254(4): 84, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561734

RESUMEN

MAIN CONCLUSION: Genome-wide identification reveals 55 PvuGRAS genes belonging to 16 subfamilies and their gene structures and evolutionary relationships were characterized. Expression analyses highlight their prominence in plant growth, development and abiotic stress responses. GRAS proteins comprise a plant-specific transcription factor family involved in multiple growth regulatory pathways and environmental cues including abiotic/biotic stresses. Despite its crucial importance, characterization of this gene family is still elusive in common bean. A systematic genome-wide scan identified 55 PvuGRAS genes unevenly anchored to the 11 common bean chromosomes. Segmental duplication appeared to be the key driving force behind expansion of this gene family that underwent purifying selection during evolution. Computational investigation unraveled their intronless organization and identified similar motif composition within the same subfamily. Phylogenetic analyses clustered the PvuGRAS proteins into 16 phylogenetic clades and established extensive orthologous relationships with Arabidopsis and rice. Analysis of the upstream promoter region uncovered cis-elements responsive to growth, development, and abiotic stresses that may account for their differential expression. The identified SSRs could serve as putative molecular markers facilitating future breeding programs. 37 PvuGRAS transcripts were post-transcriptionally regulated by different miRNA families, miR171 being the major player preferentially targeting members of the HAM subfamily. Global expression profile based on RNA-seq data indicates a clade specific expression pattern in various tissues and developmental stages. Additionally, nine PvuGRAS genes were chosen for further qPCR analyses under drought, salt, and cold stress suggesting their involvement in acclimation to environmental stimuli. Combined, the present results significantly contribute to the current understanding of the complexity and biological function of the PvuGRAS gene family. The resources generated will provide a solid foundation in future endeavors for genetic improvement in common bean.


Asunto(s)
Phaseolus , Respuesta al Choque por Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Familia de Multigenes , Phaseolus/genética , Phaseolus/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
7.
R Soc Open Sci ; 6(7): 190896, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31417765

RESUMEN

In advanced medication, drug-loaded polymeric nanoparticles (NPs) appeared as a novel drug delivery system with lots of advantages over conventional medicines. Despite all the advantages, NPs do not gain popularity for manufacturing hurdles. The study focused on the formulation difficulties and implementation of statistical design to establish an effective model for manufacturing NPs. In this study, physico-chemical properties of the drug and polymer (PLGA) were incorporated to understand the mechanistic insights of nanoformulations. Primarily, the process controlling parameters were screened by Plackett-Burman design and the critical process parameters (Cpp) were further fabricated by Box-Behnken design (BBD). The TLM-PLGA-NPs (telmisartan loaded PLGA NPs) exhibited particle size, encapsulation efficiency and zeta potential of 232.4 nm, 79.21% and -9.92 mV respectively. The NPs represented drug loading of 76.31%. Korsmeyer-Peppas model (R 2 = 0.925) appeared to be the best fitted model for in vitro release kinetics of NPs. The model identified Fickian diffusion of TLM from the polymeric nanoparticles. The ANOVA results of variables indicate that BBD is a suitable model for the development of polymeric NPs. The study successfully identified and evaluated the correlation of significant parameters that were directly or indirectly influencing the formulations which deliberately produce desired nanoparticles with the help of statistical design.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31276955

RESUMEN

In spite of having a remarkable anti tumor activity against a wide variety of cancers, the clinical effectiveness of the major chemotherapeutic drug paclitaxel is often limited by the issues of drug resistance that hampers the therapeutic effectiveness of the drug. The combination of proton pump inhibitor with paclitaxel is an effective approach to overcome therapeutic resistance caused by the acidic microenvironment (Warburg effect) in tumor. In the present study a new simple, precise and selective liquid chromatography tandem mass spectrometry method was developed for quantification of paclitaxel and lansoprazole using esomeprazole as an internal standard and applied for the pharmacokinetic study of investigational paclitaxel - lansoprazole loaded PLGA nanoparticles. The developed method quantifies both the drugs simultaneously irrespective of their dissimilar stability concerns. The detection was exercised with multiple reaction-monitoring mode in positive ionization that yielded highly intense response of parent-product (m/z) transition pair 854.4 → 286.1, 370.1 → 251.9 and 346 → 198 for paclitaxel, lansoprazole and Esomeprazole respectively. The chromatographic separation was achieved using phenomenex Kinetex 5 µ C18 100A 50 × 3.0 mm column and a gradient mobile phase combination of ammonium acetate in deionized water (pH 6.8, 2 mM, w/v) and acetonitrile spiked with formic acid (1:1000, v/v ). This method showed good linearity over a concentration range of 10-320 ng/mL and 100-3200 ng/mL with correlation coefficient (R2) 0.98 and 0.94 for paclitaxel and lansoprazole respectively. Using liquid liquid extraction process both the drugs were extracted from rat plasma. The intra- and inter-day precision and accuracy values were within the variability limits and both the analytes were found to be stable throughout the freeze-thaw, auto-sampler, bench top and long term stability studies. The liquid chromatography tandem mass spectrometry method was successfully validated in accordance with United States Food and Drug administration guidelines and the results were within the acceptable limits. The liquid chromatography tandem mass spectrometry method was successfully utilized for the pharmacokinetic investigation of experimental paclitaxel - lansoprazole loaded PLGA nanoparticles in rat plasma.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lansoprazol/sangre , Paclitaxel/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Composición de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Femenino , Lansoprazol/química , Lansoprazol/farmacocinética , Masculino , Paclitaxel/química , Paclitaxel/farmacocinética , Ratas
9.
RSC Adv ; 9(1): 240-254, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-35521568

RESUMEN

Paclitaxel (PTX) is a major chemotherapeutic drug that is effective against a wide variety of cancers, particularly breast, ovarian and lung cancer. For a weakly basic chemotherapeutic drug such as PTX, the development of the acidic tumor microenvironment (Warburg effect) has a remarkable impact on therapeutic resistance. The present approach takes advantage of the acidic tumor microenvironment by incorporating lansoprazole (LAN), a proton pump inhibitor (PPI), with PTX as a potent therapeutic combination that is capable of reversing PTX resistance. To deliver optimal amounts of the drugs to neoplastic cells, a nano drug delivery system was selected. To design the nanoformulation process in a limited framework, typical formulation parameters were optimized and validated by the application of response surface methodology (RSM) using Box-Behnken design (BBD). On the basis of critical quality aspects, the experimental design helped to determine the optimal particle size (243.7 nm), zeta potential (-9.14 mV) and encapsulation efficiencies (88.91% and 80.35% for PTX and LAN respectively). The optimized formulation (PTX-LAN-PLGA-NPs) exhibited sustained in vitro release profiles over 384 hours for both the encapsulated drugs. The Korsmeyer-Peppas model was found to be the best fitted model for the release kinetics, where the release mechanism follows Fickian diffusion. In in vitro anti-tumor efficacy experiments using Michigan Cancer Foundation-7 (MCF-7) breast cancer cells, the PTX-LAN-PLGA-NPs exhibited a steep decrease in cell viability compared to the pure drugs. Taken together, the results strongly support that incorporation of PTX and LAN in nanoparticles (NPs) is a promising approach for cancer chemotherapy.

10.
J Nucl Med ; 59(2): 244-250, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28747518

RESUMEN

External-beam radiotherapy plays a critical role in the treatment of most pediatric solid tumors. Particularly in children, achieving an optimal therapeutic index to avoid damage to normal tissue is extremely important. Consequently, in metastatic disease, the utility of external-beam radiotherapy is limited. Molecular radiotherapy with tumor-targeted radionuclides may overcome some of these challenges, but to date there exists no single cancer-selective agent capable of treating various pediatric malignancies independently of their histopathologic origin. We tested the therapeutic potential of the clinical-grade alkyl-phospholipid ether analog CLR1404, 18-(p-iodophenyl)octadecyl phosphocholine, as a scaffold for tumor-targeted radiotherapy of pediatric malignancies. Methods: Uptake of CLR1404 by pediatric solid tumor cells was tested in vitro by flow cytometry and in vivo by PET/CT imaging and dosimetry. The therapeutic potential of 131I-CLR1404 was evaluated in xenograft models. Results: In vitro, fluorescent CLR1404-BODIPY showed significant selective uptake in a variety of pediatric cancer lines compared with normal controls. In vivo tumor-targeted uptake in mouse xenograft models using 124I-CLR1404 was confirmed by imaging. Single-dose intravenous injection of 131I-CLR1404 significantly delayed tumor growth in all rodent pediatric xenograft models and extended animal survival while demonstrating a favorable side effect profile. Conclusion:131I-CLR1404 has the potential to become a tumor-targeted radiotherapeutic drug with broad applicability in pediatric oncology. Because 131I-CLR1404 has entered clinical trials in adults, our data warrant the development of pediatric clinical trials for this particularly vulnerable patient population.


Asunto(s)
Yodobencenos/química , Yodobencenos/uso terapéutico , Neoplasias/radioterapia , Éteres Fosfolípidos/química , Éteres Fosfolípidos/uso terapéutico , Alquilación , Animales , Transporte Biológico , Línea Celular Tumoral , Transformación Celular Neoplásica , Niño , Humanos , Yodobencenos/metabolismo , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/patología , Éteres Fosfolípidos/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Análisis de Supervivencia
11.
J Neurosurg ; 126(5): 1448-1460, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27419830

RESUMEN

OBJECTIVE Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than 2 years with current treatment. Glioblastomas exhibit extensive intratumoral and interpatient heterogeneity, suggesting that successful therapies should produce broad anticancer activities. Therefore, the natural nontoxic pleiotropic agent, resveratrol, was studied for antitumorigenic effects against GBM. METHODS Resveratrol's effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts in mice by using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. RESULTS Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel Transwell assay at doses similar to those mediating antiproliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intratumoral or peritumoral resveratrol injection further suppressed growth and approximated tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared with intravenous delivery, and with no apparent toxicity. CONCLUSIONS Resveratrol potently inhibited GBM and GSC growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other antitumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e., convection-enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in the brain. Resveratrol's nontoxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Resveratrol/uso terapéutico , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Toxicol Appl Pharmacol ; 288(3): 453-62, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341291

RESUMEN

Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death.


Asunto(s)
Productos Biológicos/farmacología , Neoplasias de la Mama/genética , Señalización del Calcio , Proteínas de Unión al GTP/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Femenino , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/genética
13.
Am J Cancer Res ; 5(11): 3422-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26807322

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor in children and is associated with high mortality in advanced stages. Survivors suffer from long-term treatment-related sequelae. Thus, new targeted treatment options are urgently needed. 18-(p-[(127)I] iodophenyl) octadecyl phosphocholine (CLR1404) is a novel, broadly tumor targeted small molecule drug suitable for intravenous injection with highly selective tumor uptake. As a carrier molecule for radioactive iodine, CLR1404 is in clinical trials as cancer imaging agent and radiotherapeutic drug. Chemically, CLR1404 belongs to the anti-tumor alkyl phospholipids, a class of drugs known to have intrinsic cytotoxic effects on cancer cells. Therefore, we hypothesized that CLR1404 could be a tumor-targeted anti-cancer agent for neuroblastoma, and investigated its effect in vitro and in vivo. CLR1404 was taken up by NB cells in a highly tumor-selective manner both in vitro and in vivo, confirmed by flow cytometry and PET/CT imaging of mouse flank xenografts with (124)I-CLR1404, respectively. Using flow cytometry, MTT assay, Western blotting and caspase 3/7 assay, we confirm that in vitro treatment with CLR1404 leads to robust apoptosis and cell death in multiple NB cell lines and is associated with Akt inhibition, while sparing normal cells. Treatment with CLR1404 in doses of 10 or 30 mg/kg administered by intravenous injection once weekly for 7 weeks significantly inhibited the tumor growth rate in a mouse flank xenograft model of NB (P<0.001) when compared to control cohorts, without causing drug-related hematotoxicity or other noticeable adverse effects, which was determined by serial tumor volume measurements, complete blood counts, and monitoring of animal-specific health parameters. We conclude that CLR1404 warrants clinical exploration as a novel, tumor selective anticancer agent in NB and potentially other cancers.

14.
Melanoma Res ; 21(3): 180-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21407133

RESUMEN

Resveratrol, a nontoxic natural product, exhibits multifaceted biological effects including antimutagenic and anticancer properties. We examined the effect of resveratrol on the expression and activation of Akt/protein kinase B and its impact on melanoma cell migration and invasiveness. We also explored the use of resveratrol as an antimalignant treatment option against skin melanoma in mouse models of the disease. Akt expression and activity were determined by a combination of real-time PCR and western blot analysis. Cell lines stably expressing Akt or a dominant negative variant were used to further establish the role of Akt during the response to resveratrol. Wound healing and transwell assays were used as in-vitro correlates of melanoma cell migration and invasiveness. The efficacy of resveratrol in the treatment of melanoma was assessed in two syngeneic mouse models. Resveratrol downregulated and inactivated Akt in B16F10 and B16BL6 melanoma cells. Resveratrol also inhibited the migratory and invasive properties of these highly malignant cells. The reduction of cell migration and invasion, however, was reversed in cell lines overexpressing Akt or after cotreatment with pharmacological inhibitors that blocked Akt degradation. Dominant-negative Akt cells were more sensitive to resveratrol and had diminished migratory properties. Oral treatment with resveratrol reduced primary tumor volume, Akt expression, and the propensity for metastasis in syngeneic mouse models of melanoma. These results suggest that resveratrol can reduce the malignant properties of highly invasive melanoma cells by inactivating Akt. The nontoxic targeting of Akt by resveratrol makes it an attractive treatment option for melanoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Estilbenos/farmacología , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Melanoma Experimental/enzimología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología
15.
Clin Cancer Res ; 16(24): 5942-8, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21045084

RESUMEN

Low cancer survival rates and the serious side effects often associated with current chemotherapeutics highlight the need for new and effective nontoxic anticancer agents. Since 1997 when Jang and colleagues first described resveratrol's ability to inhibit carcinogenesis, it has consistently proven effective at tumor inhibition in diverse human cancer models. This finding has raised the hope that resveratrol would pioneer a novel class of nontoxic chemotherapeutics. As a consequence of initial basic and preclinical studies, resveratrol is now being extensively promoted in the unregulated nutraceutical sector. However, some fundamental aspects of resveratrol's action need to be understood before it can be developed into a clinically viable anticancer drug. These areas pertain to the key mechanism(s) by which resveratrol potentiates its antitumor effects. Current research suggests that these mechanisms might be through novel pathways, requiring an understanding of cellular uptake, sentinel targets, and in vivo biological networks. The metabolism of resveratrol and its bioavailability also warrant further consideration in light of recent in vitro and in vivo studies. Finally, we need to appreciate the sorts of information about resveratrol that may translate between different disease entities. We present a critical discussion of these issues and suggest important experiments that could pave the way to the successful translation of resveratrol to the clinic.


Asunto(s)
Estilbenos/farmacología , Estilbenos/uso terapéutico , Investigación Biomédica Traslacional , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Estudios de Evaluación como Asunto , Humanos , Modelos Biológicos , Resveratrol , Estilbenos/efectos adversos , Estilbenos/farmacocinética , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/normas
16.
Invest Ophthalmol Vis Sci ; 49(4): 1299-306, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18385041

RESUMEN

PURPOSE: To test the efficacy of resveratrol, a nontoxic plant product, in the treatment of uveal melanoma. METHODS: The effect of oral administration and peritumor injection of resveratrol was tested on tumor growth in two animal models of uveal melanoma. The mechanism of resveratrol action on uveal melanoma cells was studied in vitro in a cell-viability assay: with JC-1 dye, to measure mitochondrial membrane potential; by Western blot analysis, to analyze the cellular redistribution of cytochrome c and Smac/diablo; and in a fluorescence assay with specific substrates, to measure activation of different caspases. RESULTS: Resveratrol treatment inhibited tumor growth in animal models of uveal melanoma. Since oral administration resulted in relatively low bioavailability of resveratrol, the effect of increased local levels was tested by peritumor injection of the drug. This method resulted in tumor cell death and tumor regression. In vitro experiments with multiple uveal melanoma cell lines demonstrate that resveratrol causes a decrease in cell viability, resulting at least in part from an increase in apoptosis through a mitochondrial pathway. An early event in drug action is the direct targeting of mitochondria by resveratrol, which leads to a decrease in mitochondrial membrane potential and the eventual activation of caspase-3. CONCLUSION: These data suggest that resveratrol can inhibit tumor growth and can induce apoptosis via the intrinsic mitochondrial pathway and that by further increasing bioavailability of resveratrol the potency of the drug can be increased, leading to tumor regression. The nontoxic nature of the drug at levels needed for therapy make resveratrol an attractive candidate for the treatment of uveal melanoma.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Melanoma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Estilbenos/uso terapéutico , Neoplasias de la Úvea/tratamiento farmacológico , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Disponibilidad Biológica , Western Blotting , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma/metabolismo , Melanoma/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Desnudos , Proteínas Mitocondriales/metabolismo , Resveratrol , Trasplante Heterólogo , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología
17.
J Neurooncol ; 85(3): 255-62, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17603751

RESUMEN

Neuroblastoma is the most common extracranial solid tumor in childhood. The poor outcomes of patients with high-risk neuroblastoma have encouraged the search for new therapies. In the current study, the effect of the vitamin D analog 1alpha-hydroxyvitamin D2 (1alpha-OH-D2, doxercalciferol) was assessed in a mouse xenograft model of human neuroblastoma. Vitamin D receptor (VDR) expression levels in seven neuroblastoma cell lines were compared using real-time PCR. SK-N-AS cells, which express relatively high levels of VDR, were injected into the flanks of 60 mice. The mice were treated daily via oral gavage for 5 weeks with vehicle (control), 0.15 microg, or 0.3 microg of 1alpha-OH-D2. The animals were then euthanized, and tumors, sera, and kidneys were collected and analyzed. End tumor volumes were significantly smaller in both the 0.15 microg group (712.07 mm3, P = 0.0121) and 0.3 microg group (772.97 mm3, P = 0.0209) when compared to controls (1,681.75 mm3). In terms of toxicity, serum calcium levels were increased but mortality was minimal in both treatment groups. These results were similar to those previously described in the transgenic (LHbeta-Tag) and human xenograft (Y-79) models of retinoblastoma, a related tumor. In vitro cell viability studies of SK-N-AS and NGP cells, which represent two major human neuroblastoma subtypes that differ in their genetic abnormalities as well as their VDR expression levels, show that both are sensitive to calcitriol, the active metabolite of vitamin D3. In conclusion, the present study shows that 1alpha-OH-D2 can inhibit human neuroblastoma growth in vivo with relatively low toxicity. The safety of 1alpha-OH-D2 has been extensively studied; the drug is FDA-approved for the treatment of adult kidney patients, and Phase I/II trials have been conducted in adult oncology patients. There should not be major obstacles to starting Phase I and II clinical trials with this drug in pediatric patients with high-risk neuroblastoma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Ergocalciferoles/metabolismo , Neuroblastoma/metabolismo , Receptores de Calcitriol/metabolismo , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Calcio/sangre , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Ergocalciferoles/uso terapéutico , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales , Neuroblastoma/tratamiento farmacológico , Distribución Aleatoria , Trasplante Heterólogo
18.
J Neuropathol Exp Neurol ; 64(12): 1037-45, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16319714

RESUMEN

HuR is a ubiquitously expressed AU-rich element (ARE)-binding protein that interacts with and stabilizes selective early response gene (ERG) mRNAs after cell activation or stress. To date, approximately 20 mRNAs have been unambiguously defined as HuR ligands. Given the discordance between the large number of ERG mRNAs and those few defined as ligands, we applied in vitro selection to isolate a broad range of HuR mRNA ligands using postseizure mouse hippocampal tissue. Selected mRNAs were converted into cDNA libraries and sequenced. Using this approach, we have identified over 600 novel, putative HuR mRNA ligands. These genes code for a variety of proteins, including transcription factors, signaling molecules, and kinases, but many have unknown function. Consistent with the means of their selection, several of these HuR ligands are differentially expressed in hippocampus after seizure. These results demonstrate a biochemical approach to identify and characterize the diverse repertoire of ligands for HuR and other regulatory mRNA-binding proteins.


Asunto(s)
Antígenos de Superficie/genética , Hipocampo/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Convulsiones/metabolismo , Animales , Convulsivantes , Proteínas ELAV , Proteína 1 Similar a ELAV , Biblioteca de Genes , Técnicas In Vitro , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Pentilenotetrazol , Convulsiones/inducido químicamente
19.
Biochemistry ; 43(35): 11175-86, 2004 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-15366927

RESUMEN

Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca(2+)-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca(2+) concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca(2+) concentration. However, binding of Ca(2+) to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca(2+) affinity. The addition of N-terminal ALG-2 peptides, residues 1-22 or residues 7-17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca(2+) binding to EF-3, while Ca(2+) binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Motivos EF Hand , Melanoma/metabolismo , Neoplasias de la Úvea/metabolismo , Proteínas Reguladoras de la Apoptosis , Sitios de Unión/genética , Calcio/fisiología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Dimerización , Regulación hacia Abajo/genética , Motivos EF Hand/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Regulación Neoplásica de la Expresión Génica , Humanos , Melanocitos/citología , Melanocitos/metabolismo , Melanoma/genética , Melanoma/patología , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína/genética , Resonancia por Plasmón de Superficie , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
20.
Am J Respir Cell Mol Biol ; 29(4): 483-9, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12714378

RESUMEN

Viral respiratory infections rapidly increase vascular permeability, which leads to the transudation of serum proteins into airway secretions and tissues. To determine whether this process activates airway epithelial cells, bronchial epithelial cells were incubated with serum, and interleukin (IL)-8 secretion and gene expression were examined. As little as 0.1% serum significantly enhanced IL-8 secretion, and maximal secretion (65 +/- 4 ng/ml, 48 h) was observed with 10% serum. Low-density lipoprotein, but not albumin or immunoglobulin G, augmented bronchial epithelial IL-8 secretion, which was partially blocked by a monoclonal antibody specific for the low-density lipoprotein receptor. The IL-8-inducing activity of plasma was also augmented by clotting and platelet activation. Mechanistically, serum activated nuclear factor-kappaB and increased the stability and steady state levels of IL-8 mRNA. In summary, specific components of serum are potent activators of IL-8 mRNA and secretion, and the increased IL-8 production is likely to be a result of both increased transcription and mRNA stability. This effect may represent an innate mechanism for the recruitment of neutrophils to the airway in response to noxious stimuli, such as viral infections, that increase vascular permeability.


Asunto(s)
Proteínas Sanguíneas/inmunología , Permeabilidad Capilar/inmunología , Interleucina-8/metabolismo , Lipoproteínas LDL/inmunología , Mucosa Respiratoria/metabolismo , Infecciones del Sistema Respiratorio/inmunología , Proteínas Sanguíneas/farmacología , Células Cultivadas , Quimiotaxis de Leucocito/efectos de los fármacos , Quimiotaxis de Leucocito/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-8/genética , Interleucina-8/inmunología , Lipoproteínas LDL/farmacología , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de LDL/efectos de los fármacos , Receptores de LDL/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Infecciones del Sistema Respiratorio/fisiopatología , Infecciones del Sistema Respiratorio/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA