Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 4(20): 4335-4343, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321159

RESUMEN

Bimetallic Ag-Au/TiO2 nanocomposites were synthesized by sequential photodeposition in order to investigate the effect of surface plasmon resonance (SPR) properties on photocatalytic activity for solar water splitting and methylene blue (MB) degradation. The photodeposition times were optimized for monometallic Ag/TiO2 and Au/TiO2 nanocomposites to yield maximum SPR absorption in the visible range. It was found that the photocatalytic activity of bimetallic Ag-Au/TiO2 nanocomposites outperformed monometallic nanocomposites only when Au was photodeposited first on TiO2, which was attributed to Au-core-Ag-shell nanoparticle morphology. In contrast, reversing the photodeposition order resulted in Ag-Au alloy nanoparticle morphology, which was mediated by the galvanic replacement reaction during the second photodeposition. Alloying was not beneficial to the photocatalytic activity. These results demonstrate alloying during sequential photodeposition providing new insights for the synthesis of TiO2-based photocatalysts with plasmon-enhanced absorption in the visible range.

2.
ACS Appl Mater Interfaces ; 11(3): 2758-2762, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30608653

RESUMEN

Visually black, electrically leaky, amorphous titania (am-TiO2) thin films were grown by atomic layer deposition (ALD) for photocatalytic applications. Broad spectral absorbance in the visible range and exceptional conductivity are attributed to trapped Ti3+ in the film. Oxidation of Ti3+ upon heat treatment leads to a drop in conductivity, a color change from black to white, and crystallization of am-TiO2. ALD-grown black TiO2, without any heat treatment, is subject to dissolution in alkaline photoelectrochemical conditions. The best photocatalytic activity for solar water splitting is obtained for completely crystalline white TiO2.

3.
Sci Rep ; 7(1): 6515, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747732

RESUMEN

Any solar energy harvesting technology must provide a net positive energy balance, and artificial leaf concept provided a platform for solar water splitting (SWS) towards that. However, device stability, high photocurrent generation, and scalability are the major challenges. A wireless device based on quasi-artificial leaf concept (QuAL), comprising Au on porous TiO2 electrode sensitized by PbS and CdS quantum dots (QD), was demonstrated to show sustainable solar hydrogen (490 ± 25 µmol/h (corresponds to 12 ml H2 h-1) from ~2 mg of photoanode material coated over 1 cm2 area with aqueous hole (S2-/SO32-) scavenger. A linear extrapolation of the above results could lead to hydrogen production of 6 L/h.g over an area of ~23 × 23 cm2. Under one sun conditions, 4.3 mA/cm2 photocurrent generation, 5.6% power conversion efficiency, and spontaneous H2 generation were observed at no applied potential (see S1). A direct coupling of all components within themselves enhances the light absorption in the entire visible and NIR region and charge utilization. Thin film approach, as in DSSC, combined with porous titania enables networking of all the components of the device, and efficiently converts solar to chemical energy in a sustainable manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA