Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(9): 11914-11929, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38383343

RESUMEN

Conductive hydrogels have shown promising application prospects in the field of flexible sensors, but they often suffer from poor mechanical properties, low sensitivity, and lack of frost resistance. Herein, we report a tough, highly sensitive, and antifreeze strain sensor assembled from a conductive organohydrogel composed of a dual-cross-linked polyacrylamide and poly(vinyl alcohol) (PVA) network, as well as MXene nanosheets as nanofillers and poly(3,4-ethylenedioxythiophene)-doped poly(styrenesulfonate) (PEDOT/PSS) as the main conducting component (PPMP-OH organohydrogel). The tensile strength and toughness of PPMP-OH had been greatly enhanced by MXene nanosheets due to the mechanical reinforcement of MXene nanosheets, as well as various strong noncovalent interactions formed in the organohydrogels. The PPM1P-OH organohydrogels showed a tensile strength of 1.48 MPa at 772% and a toughness of 5.59 MJ/m3. Moreover, the conductivity and strain-sensing performance of PPMP-OH were significantly improved by PEDOT/PSS, which can form hydrogen bonds with PVA and electrostatic interactions with MXene. This was greatly beneficial for constructing a uniformly distributed and stable 3D conductive network and helped to obtain strain-dependent resistance of PPMP-OH. The strain sensors assembled from PPMP1-OH exhibited a high sensitivity of 5.16, a wide range of detectable strains up to 500%, and a short response time of 122 ms, which can effectively detect various physiological activities of the human body with high stability. In addition, the corresponding pressure sensor array also showed high sensitivity in identifying pressure magnitude and position.

2.
Carbohydr Polym ; 315: 120953, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230609

RESUMEN

Conductive hydrogels have attracted widespread attention because of their integrated characteristics of being stretchable, deformable, adhesive, self-healable, and conductive. Herein, we report a highly conductive and tough double-network hydrogel based on a double cross-linked polyacrylamide (PAAM) and sodium alginate (SA) network with conducting polypyrrole nanospheres (PPy NSs) uniformly distributed in the network (PAAM-SA-PPy NSs). SA was employed as a soft template for synthesis of PPy NSs and distribution of PPy NSs uniformly in the hydrogel matrix to construct SA-PPy conductive network. The PAAM-SA-PPy NS hydrogel exhibited both high electrical conductivity (6.44 S/m) and excellent mechanical properties (tensile strength of 560 kPa at 870 %), as along as high toughness, high biocompatibility, good self-healing and adhesion properties. The assembled strain sensors showed high sensitivity and a wide sensing range (a gauge factor of 1.89 for 0-400 % strain and 4.53 for 400-800 % strain, respectively), as well as fast responsiveness and reliable stability. When used as a wearable strain sensor, it was able to monitor a series of physical signals from human large-scale joint motions and subtle muscle movements. This work provides a new strategy for the development of electronic skins and flexible strain sensors.


Asunto(s)
Nanosferas , Humanos , Polímeros , Pirroles , Alginatos , Conductividad Eléctrica , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA