RESUMEN
Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HxPO4-RuOx/CeO2 catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HxPO4/CeO2) promoted DCM activation on basic sites (O2-) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuOx/CeO2), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO2 selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.
Asunto(s)
Acetatos , Cerio , Cloruro de Metileno , Acetatos/química , Catálisis , Cloruro de Metileno/química , Cerio/química , Compuestos Orgánicos Volátiles/química , Adsorción , Oxidación-Reducción , Rutenio/químicaRESUMEN
Heparin, a widely studied glycosaminoglycan, plays crucial roles in the regulation of various physiological and pathological processes. Therefore, it's important to develop highly selective and sensitive methods for convenient monitoring of heparin levels in biological systems. We report the design and synthesis of Fe3O4@PDA@MnO2 nanoparticles (FPM-NPs), which exhibit dual enzymatic activities, enabling quantitative detection of heparin. The FPM-NPs feature a unique tri-layer spherical shell structure, possessing both peroxidase-like and oxidase-like activities, and catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence or absence of H2O2. Remarkably, upon co-incubated with heparin, the oxidase activity of FPM-NPs decreases, while the peroxidase activity increases. By leveraging these dual enzymatic properties of FPM-NPs, a highly sensitive and specific colorimetric detection of heparin is achieved, with a detection limit reaching 6.51 nM and a good linear response to quantify heparin ranging 10-800 nM. Additionally, the developed FPM-NPs are successfully applied to measure heparin in fetal bovine serum samples. We also extend this detection method to a paper-based chip, enabling portable detection of heparin through grayscale analysis of mobile phone photographs. The multi-nanozyme-based heparin detection approach provides a new perspective for future research on expanding the application of nanocomposite materials in biomedical detection and analysis.
Asunto(s)
Colorimetría , Heparina , Compuestos de Manganeso , Nanocompuestos , Óxidos , Oxidorreductasas , Colorimetría/métodos , Compuestos de Manganeso/química , Óxidos/química , Heparina/química , Heparina/sangre , Heparina/análisis , Nanocompuestos/química , Oxidorreductasas/química , Límite de Detección , Bencidinas/química , Animales , Bovinos , Materiales Biomiméticos/química , Peroxidasa/química , Peroxidasa/metabolismo , Polímeros/química , Oxidación-Reducción , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisisRESUMEN
Microcolumn gel immunoassay (MGIA) has the ability to meet the requirements of clinical diagnosis due to its reliable sensitivity and accuracy. However, traditional MGIA exhibits limitations including inadequate portability, low throughput, and extended analysis time. To address these challenges, we combined MGIA with microfluidic technology, demonstrating a centrifugal microfluidic-based microcolumn gel immunoassay (µMGIA) platform for blood typing of clinical samples. Experimental results indicate that the µMGIA platform can simultaneously detect six blood group antigens in five clinical blood samples within 2 min. Notably, it offers comprehensive detection of ABO blood group antigens and Rh blood group antigens with 100 % accuracy, outperforming the traditional slide method. The integration of microfluidic technology with MGIA circumvents the constraints of traditional methods, providing a new avenue for blood typing and immunoanalysis of clinical samples.
RESUMEN
Pyroptosis has been found to contribute to myocardial ischemia/reperfusion (I/R) injury, but the exact mechanisms that initiate myocardial pyroptosis are not fully elucidated. Sonic hedgehog (SHH) signaling is activated in heart suffered I/R, and intervention of SHH signaling has been demonstrated to protect heart from I/R injury. Caspase recruitment domain-containing protein 10 (CARD10)-B cell lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (CBM) complex could transduce signals from the membrane and induce inflammatory pathways in non-hematopoietic cells, which could be a downstream effector of SHH signaling pathway. This study aims to explore the role of SHH signaling in I/R-induced myocardial pyroptosis and its relationship with the CBM complex. C57BL/6J mice were subjected to 45 min-ischemia followed by 24 h-reperfusion to establish a myocardial I/R model, and H9c2 cells underwent hypoxia/reoxygenation (H/R) to mimic myocardial I/R model in vitro. Firstly, SHH signaling was significantly activated in heart suffered I/R in an autocrine- or paracrine-dependent manner via its receptor PTCH1, and inhibition of SHH signaling decreased myocardial injury via reducing caspase-11-dependent pyroptosis, concomitant with attenuating CBM complex formation. Secondly, suppression of SHH signaling decreased protein kinase C α (PKCα) level, but inhibition of PKCα attenuated CBM complex formation without impacting the protein levels of SHH and PTCH1. Finally, disruption of the CBM complex prevented MALT1 from recruiting of TRAF6, which was believed to trigger the caspase-11-dependent pyroptosis. Based on these results, we conclude that inhibition of SHH signaling suppresses pyroptosis via attenuating PKCα-mediated CARD10-BCL10-MALT1 complex formation in mouse heart suffered I/R.
RESUMEN
Discs and numerous other consumer products have been developed for point of care testing (POCT) to replace traditional large and expensive biochemical devices in certain scenarios. Herein, we propose a drip-dry strategy (2D strategy) assisted Blu-ray disc (BD) biosensor, termed BDB, for rapid and portable POCT within 30 min with the cost of a single test < $1. The platform utilizes the covered area formed by the deposition of the substance to be measured on the activated BD surface after the evaporation of water and realizes the quantitative detection of the target through the error readout of free disc quality diagnosis software. As a proof of concept, we first demonstrated the feasibility of direct quantitative detection of substances in solution in a single system through the detection of pure proteins avoiding colorimetric reagent used in traditional optical detection. For the complex mixed systems, we then innovatively utilize the principle that soluble targets promote/inhibit the dissolution of insoluble precipitates to achieve specific detection of targets and successfully apply BDB to the indirect quantitative detection of glutathione (GSH) with LOD of 0.447 mM in the range of 2-16 mM and organophosphorus pesticides (OPs) with LOD of 2.122 × 10-7 M in the range of 1.289 × 10-7-1.289 × 10-4 M. The BDB is widely applicable, easy to operate, and less time-consuming, which is anticipated to provide an alternative method for early, on-site detection or screening.
RESUMEN
Protein quality control serves as the primary defense mechanism for cells against proteotoxicity induced by proteasome dysfunction. While cells can limit the build-up of ubiquitinated misfolded proteins during proteasome inhibition, the precise mechanism is unclear. Here, we find that protein kinase Ca2+/Calmodulin (CaM)-dependent protein kinase II (CaMKII) maintains proteostasis during proteasome inhibition. We show that proteasome inhibition activates CaMKII, which phosphorylates B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) at residues S173, S377, and S386. Phosphorylated BAG3 activates the heme-regulated inhibitor (HRI)- eukaryotic initiation factor-2α (eIF2α) signaling pathway, suppressing protein synthesis and the production of aggregated ubiquitinated misfolded proteins, ultimately mitigating the proteotoxic crisis. Inhibition of CaMKII exacerbates the accumulation of aggregated misfolded proteins and paraptosis induced by proteasome inhibitors. Based on these findings, we validate that combined targeting of proteasome and CaMKII accelerates tumor cell death and enhances the efficacy of proteasome inhibitors in tumor treatment. Our data unveil a new proteasomal inhibition-induced misfolded protein quality control mechanism and propose a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Transducción de Señal/efectos de los fármacos , FemeninoRESUMEN
Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.
Asunto(s)
Endosomas , Antígenos de Histocompatibilidad Clase I , Inmunoterapia , Lisosomas , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Lisosomas/metabolismo , Endosomas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Animales , Transporte de Proteínas , Microambiente Tumoral/inmunología , Presentación de Antígeno/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacologíaRESUMEN
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Asunto(s)
ARN , Análisis de Secuencia de ARN , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Procesamiento Postranscripcional del ARNRESUMEN
RNA molecules contain diverse modified nucleobases that play pivotal roles in numerous biological processes. Adenosine-to-inosine (A-to-I) RNA editing, one of the most prevalent RNA modifications in mammalian cells, is linked to a multitude of human diseases. To unveil the functions of A-to-I RNA editing, accurate quantification of inosine at specific sites is essential. In this study, we developed an endonuclease-mediated cleavage and real-time fluorescence quantitative PCR method for A-to-I RNA editing (EM-qPCR) to quantitatively analyze A-to-I RNA editing at a single site. By employing this method, we successfully quantified the levels of A-to-I RNA editing on various transfer RNA (tRNA) molecules at position 34 (I34) in mammalian cells with precision. Subsequently, this method was applied to tissues from sleep-deprived mice, revealing a notable alteration in the levels of I34 between sleep-deprived and control mice. The proposed method sets a precedent for the quantitative analysis of A-to-I RNA editing at specific sites, facilitating a deeper understanding of the biological implications of A-to-I RNA editing.
Asunto(s)
Adenosina , Inosina , Edición de ARN , Inosina/metabolismo , Inosina/química , Adenosina/metabolismo , Adenosina/química , Adenosina/análisis , Animales , Ratones , Humanos , Endonucleasas/metabolismo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Cytosine modifications, particularly 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), play crucial roles in numerous biological processes. Current analytical methods are often constrained to the separate detection of either 5mC or 5hmC, or the combination of both modifications. The ability to simultaneously detect C, 5mC, and 5hmC at the same genomic locations with precise stoichiometry is highly desirable. Herein, we introduce a method termed engineered deaminase-assisted sequencing (EDA-seq) for the simultaneous quantification of C, 5mC, and 5hmC at the same genomic sites. EDA-seq utilizes a specially engineered protein, derived from human APOBEC3A (A3A), known as eA3A-M5. eA3A-M5 exhibits distinct deamination capabilities for C, 5mC, and 5hmC. In EDA-seq, C undergoes complete deamination and is sequenced as T. 5mC is partially deaminated resulting in a mixed readout of T and C, and 5hmC remains undeaminated and is read as C. Consequently, the proportion of T readouts (P T) reflects the collective occurrences of C and 5mC, regulated by the deamination rate of 5mC (R 5mC). By determining R 5mC and P T values, we can deduce the precise levels of C, 5mC, and 5hmC at particular genomic locations. We successfully used EDA-seq to simultaneously measure C, 5mC, and 5hmC at specific loci within human lung cancer tissue and their normal counterpart. The results from EDA-seq demonstrated a strong concordance with those obtained from the combined application of BS-seq and ACE-seq methods. EDA-seq eliminates the need for bisulfite treatment, DNA oxidation or glycosylation and uniquely enables simultaneous quantification of C, 5mC and 5hmC at the same genomic locations.
RESUMEN
Objective: Programmed cell death protein-1 (PD-1) inhibitor-based therapy has demonstrated promising results in metastatic gastric cancer (MGC). However, the previous researches are mostly clinical trials and have reached various conclusions. Our objective is to investigate the efficacy of PD-1 inhibitor-based treatment as first-line therapy for MGC, utilizing real-world data from China, and further analyze predictive biomarkers for efficacy. Methods: This retrospective study comprised 105 patients diagnosed with MGC who underwent various PD-1 inhibitor-based treatments as first-line therapy at West China Hospital of Sichuan University from January 2018 to December 2022. Patient characteristics, treatment regimens, and tumor responses were extracted. We also conducted univariate and multivariate analyses to assess the relationship between clinical features and treatment outcomes. Additionally, we evaluated the predictive efficacy of several commonly used biomarkers for PD-1 inhibitor treatments. Results: Overall, after 28.0 months of follow-up among the 105 patients included in our study, the objective response rate (ORR) was 30.5%, and the disease control rate (DCR) was 89.5% post-treatment, with two individuals (1.9%) achieving complete response (CR). The median progression-free survival (mPFS) was 9.0 months, and the median overall survival (mOS) was 22.0 months. According to both univariate and multivariate analyses, favorable OS was associated with patients having Eastern Cooperative Oncology Group performance status (ECOG PS) of 0-1. Additionally, normal baseline levels of carcinoembryonic antigen (CEA), as well as the combination of PD-1 inhibitors with chemotherapy and trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)-positive MGC, independently predicted longer PFS and OS. However, microsatellite instability/mismatch repair (MSI/MMR) status and Epstein-Barr virus (EBV) infection status were not significantly correlated with PFS or OS extension. Conclusion: As the first-line treatment, PD-1 inhibitors, either as monotherapy or in combination therapy, are promising to prolong survival for patients with metastatic gastric cancer. Additionally, baseline level of CEA is a potential predictive biomarker for identifying patients mostly responsive to PD-1 inhibitors.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , China , Biomarcadores de Tumor , Resultado del Tratamiento , Metástasis de la Neoplasia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pueblos del Este de AsiaRESUMEN
Objective: The leptin receptor, encoded by the LEPR gene, is involved in tumorigenesis. A potential functional variant of LEPR, rs1137101 (Gln223Arg), has been extensively investigated for its contribution to the risk of digestive system (DS) cancers, but results remain conflicting rather than conclusive. Here, we performed a case-control study and subsequent meta-analysis to examine the association between rs1137101 and DS cancer risk. Methods: A total of 1,727 patients with cancer (gastric/liver/colorectal: 460/480/787) and 800 healthy controls were recruited. Genotyping of rs1137101 was conducted using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay and confirmed using Sanger sequencing. Twenty-four eligible studies were included in the meta-analysis. Results: After Bonferroni correction, the case-control study revealed that rs1137101 was significantly associated with the risk of liver cancer in the Hubei Chinese population. The meta-analysis suggested that rs1137101 is significantly associated with the risk of overall DS, gastric, and liver cancer in the Chinese population. Conclusion: The LEPR rs1137101 variant may be a genetic biomarker for susceptibility to DS cancers (especially liver and gastric cancer) in the Chinese population.
Asunto(s)
Neoplasias del Sistema Digestivo , Predisposición Genética a la Enfermedad , Receptores de Leptina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , China/epidemiología , Neoplasias del Sistema Digestivo/genética , Polimorfismo de Nucleótido Simple , Receptores de Leptina/genética , Factores de Riesgo , Pueblos del Este de Asia/genéticaRESUMEN
For every epidemic outbreak, the prevention and treatments in resource-limited areas are always out of reach. Critical to this is that high accuracy, stability, and more comprehensive analytical techniques always rely on expensive and bulky instruments and large laboratories. Here, a fully integrated and high-throughput microfluidic system is proposed for ultra-multiple point-of-care immunoassay, termed Dac system. Specifically, the Dac system only requires a handheld portable device to automatically recycle repetitive multi-step reactions including on-demand liquid releasing, dispensing, metering, collecting, oscillatory mixing, and discharging. The Dac system performs high-precision enzyme-linked immunosorbent assays for up to 17 samples or targets simultaneously on a single chip. Furthermore, reagent consumption is only 2% compared to conventional ELISA, and microbubble-accelerated reactions shorten the assay time by more than half. As a proof of concept, the multiplexed detections are achieved by detecting at least four infection targets for two samples simultaneously on a singular chip. Furthermore, the barcode-based multi-target results can rapidly distinguish between five similar cases, allowing for accurate therapeutic interventions. Compared to bulky clinical instruments, the accuracy of clinical inflammation classification is 92.38% (n = 105), with a quantitative correlation coefficient of R2 = 0.9838, while the clinical specificity is 100% and the sensitivity is 98.93%.
Asunto(s)
Pruebas en el Punto de Atención , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Microfluídica/instrumentación , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Sistemas de Atención de PuntoRESUMEN
Immunotherapy, in the shape of immune checkpoint inhibitors (ICIs), has completely changed the treatment of cancer. However, the increasing expense of treatment and the frequency of immune-related side effects, which are frequently associated with combination antibody therapies and Fc fragment of antibody, have limited the patient's ability to benefit from these treatments. Herein, we presented the therapeutic effects of the plasmid-encoded PD-1 and CTLA-4 scFvs (single-chain variable fragment) for melanoma via an optimized intramuscular gene delivery system. After a single injection, the plasmid-encoded ICI scFv in mouse sera continued to be above 150 ng/mL for 3 weeks and reached peak amounts of 600 ng/mL. Intramuscular delivery of plasmid encoding PD-1 and CTLA-4 scFvs significantly changed the tumor microenvironment, delayed tumor growth, and prolonged survival in melanoma-bearing mice. Furthermore, no significant toxicity was observed, suggesting that this approach could improve the biosafety of ICIs combination therapy. Overall, the expression of ICI scFvs in vivo using intramuscular plasmid delivery could potentially develop into a reliable, affordable, and safe immunotherapy technique, expanding the range of antibody-based gene therapy systems that are available.
RESUMEN
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
RESUMEN
Point of care testing (POCT) of nucleic acids holds significant importance in the realm of infectious disease prevention and control, as well as the advancement of personalized precision medicine. Nevertheless, conventional nucleic acid testing methods continue to face challenges such as prolonged detection times and dependence on extensive specialized equipment and personnel, rendering them unsuitable for point of care applications. Here, we proposed an innovative active centrifugal microfluidic system (ACMS) for automatic nucleic acid extraction, encompassing modules for active valve control and magnetic control. An on-chip centrifugal puncture valve (PV) was devised based on the elastic tolerance differences between silicone membranes and tinfoils to release pre-embedded liquid reagents on demand. Furthermore, we have utilized the returnable valve (RV) technology to accurately control the retention and release of liquids, leveraging the high elastic tolerance of the silicone membrane. By incorporating an online controllable magnetic valve, we have achieved controlled and rapid aggregation and dispersion of magnetic beads. The final chip encapsulates multiple reagents and magnetic beads necessary for nucleic acid extraction. Upon sample addition and loading into the instrument, automated on-chip sample loading and nucleic acid extraction, purification, and collection can be accomplished within 30 minutes, halving the overall operation time and even increasing the efficiency of pseudovirus extraction by three orders of magnitude. Consequently, real-time fluorescence quantitative PCR amplification has successfully detected multiple targets of the SARS-CoV-2 virus (with an impressive detection limit as low as 10 copies per µL), along with targeted sequencing analysis yielding a conformity rate of 99%.
Asunto(s)
Centrifugación , Dispositivos Laboratorio en un Chip , Centrifugación/instrumentación , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Ácidos Nucleicos/aislamiento & purificación , Ácidos Nucleicos/análisis , ARN Viral/aislamiento & purificación , ARN Viral/análisis , COVID-19/diagnóstico , COVID-19/virologíaRESUMEN
In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of ß-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.
RESUMEN
RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.
Asunto(s)
Diferenciación Celular , Macrófagos , Monocitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Diferenciación Celular/genética , Humanos , Monocitos/metabolismo , Monocitos/citología , Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polaridad Celular/genética , ARN/genética , ARN/metabolismo , Adenosina/metabolismoRESUMEN
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.
Asunto(s)
Adenosina , Inosina , Edición de ARN , Adenosina/análogos & derivados , Adenosina/análisis , Adenosina/metabolismo , Inosina/metabolismo , Inosina/análogos & derivados , Inosina/química , Desaminación , ARN/metabolismo , ARN/genética , ARN/análisis , Transcripción Reversa , HumanosRESUMEN
Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.