Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Adv Sci (Weinh) ; : e2402327, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981014

RESUMEN

Dysregulation of the transforming growth factor-ß (TGF-ß) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-ß receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-ß-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-ß receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-ß signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-ß signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-ß signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-ß signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-ß signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.

2.
Imeta ; 3(3): e199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898986

RESUMEN

The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.

3.
Sci Adv ; 10(23): eadl6083, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838151

RESUMEN

Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.


Asunto(s)
Antígeno CD47 , Carcinoma Hepatocelular , Receptores de Hialuranos , Neoplasias Hepáticas , Fagocitos , Fagocitosis , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Antígeno CD47/metabolismo , Antígeno CD47/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Evasión Inmune , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Ratones Noqueados , FN-kappa B/metabolismo , Fagocitos/metabolismo , Fagocitos/inmunología , Transducción de Señal , Escape del Tumor , Microambiente Tumoral/inmunología
4.
Cancer Cell ; 42(5): 815-832.e12, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38640932

RESUMEN

Monocyte-derived tumor-associated macrophages (Mo-TAMs) intensively infiltrate diffuse gliomas with remarkable heterogeneity. Using single-cell transcriptomics, we chart a spatially resolved transcriptional landscape of Mo-TAMs across 51 patients with isocitrate dehydrogenase (IDH)-wild-type glioblastomas or IDH-mutant gliomas. We characterize a Mo-TAM subset that is localized to the peri-necrotic niche and skewed by hypoxic niche cues to acquire a hypoxia response signature. Hypoxia-TAM destabilizes endothelial adherens junctions by activating adrenomedullin paracrine signaling, thereby stimulating a hyperpermeable neovasculature that hampers drug delivery in glioblastoma xenografts. Accordingly, genetic ablation or pharmacological blockade of adrenomedullin produced by Hypoxia-TAM restores vascular integrity, improves intratumoral concentration of the anti-tumor agent dabrafenib, and achieves combinatorial therapeutic benefits. Increased proportion of Hypoxia-TAM or adrenomedullin expression is predictive of tumor vessel hyperpermeability and a worse prognosis of glioblastoma. Our findings highlight Mo-TAM diversity and spatial niche-steered Mo-TAM reprogramming in diffuse gliomas and indicate potential therapeutics targeting Hypoxia-TAM to normalize tumor vasculature.


Asunto(s)
Adrenomedulina , Neoplasias Encefálicas , Glioblastoma , Macrófagos Asociados a Tumores , Humanos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Animales , Adrenomedulina/genética , Adrenomedulina/metabolismo , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Neovascularización Patológica/genética , Microambiente Tumoral , Isocitrato Deshidrogenasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Macrófagos/metabolismo , Hipoxia de la Célula
5.
Pathol Res Pract ; 256: 155251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490097

RESUMEN

Aberrant adrenal function has been frequently reported in COVID-19 patients, but histopathological evidence remains limited. This retrospective autopsy study aims to scrutinize the impact of COVID-19 duration on adrenocortical zonational architecture and peripheral corticosteroid reactivity. The adrenal glands procured from 15 long intensive care unit (ICU)-stay COVID-19 patients, 9 short ICU-stay COVID-19 patients, and 20 matched controls. Subjects who had received glucocorticoid treatment prior to sampling were excluded. Applying hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining, we disclosed that the adrenocortical zonational structure was substantially disorganized in COVID-19 patients, which long ICU-stay patients manifested a higher prevalence of severe disorganization (67%) than short ICU-stay patients (11%; P = 0.0058). The adrenal cortex of COVID-19 patients exhibited a 40% decrease in the zona glomerulosa (ZG) area and a 74% increase in the zona fasciculata (ZF) area (both P < 0.0001) relative to controls. Furthermore, among long ICU-stay COVID-19 patients, the ZG area diminished by 31% (P = 0.0004), and the ZF area expanded by 27% (P = 0.0004) in comparison to short ICU-stay patients. The zona reticularis (ZR) area remained unaltered. Nuclear translocation of corticosteroid receptors in the liver and kidney of long ICU-stay COVID-19 patients was at least 43% lower than in short ICU-stay patients (both P < 0.05). These findings underscore the necessity for clinicians to monitor adrenal function in long-stay COVID-19 patients.


Asunto(s)
Corteza Suprarrenal , COVID-19 , Humanos , Enfermedad Crítica , Estudios Retrospectivos , Glándulas Suprarrenales , Corticoesteroides
6.
J Colloid Interface Sci ; 660: 869-884, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277843

RESUMEN

Infiltration and activation of intratumoral T lymphocytes are critical for immune checkpoint blockade (ICB) therapy. Unfortunately, the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME) induced by tumor metabolic reprogramming cooperatively hinder the ICB efficacy. Herein, we engineered a lactate-depleting MOF-based catalytic nanoplatform (LOX@ZIF-8@MPN), encapsulating lactate oxidase (LOX) within zeolitic imidazolate framework-8 (ZIF-8) coupled with a coating of metal polyphenol network (MPN) to reinforce T cell response based on a "two birds with one stone" strategy. LOX could catalyze the degradation of the immunosuppressive lactate to promote vascular normalization, facilitating T cell infiltration. On the other hand, hydrogen peroxide (H2O2) produced during lactate depletion can be transformed into anti-tumor hydroxyl radical (•OH) by the autocatalytic MPN-based Fenton nanosystem to trigger immunogenic cell death (ICD), which largely improved the tumor immunogenicity. The combination of ICD and vascular normalization presents a better synergistic immunopotentiation with anti-PD1, inducing robust anti-tumor immunity in primary tumors and recurrent malignancies. Collectively, our results demonstrate that the concurrent depletion of lactate to reverse the immunosuppressive TME and utilization of the by-product from lactate degradation via cascade catalysis promotes T cell response and thus improves the effectiveness of ICB therapy.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Ácido Láctico/farmacología , Estructuras Metalorgánicas/farmacología , Peróxido de Hidrógeno/farmacología , Linfocitos T , Inmunoterapia , Línea Celular Tumoral , Microambiente Tumoral
7.
ACS Nano ; 18(5): 4189-4204, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38193384

RESUMEN

cGAS-STING signaling plays a critical role in radiotherapy (RT)-mediated immunomodulation. However, RT alone is insufficient to sustain STING activation in tumors under a safe X-ray dose. Here, we propose a radiosensitization cooperated with cGAS stimulation strategy by engineering a core-shell structured nanosized radiosensitizer-based cGAS-STING agonist, which is constituted with the hafnium oxide (HfO2) core and the manganese oxide (MnO2) shell. HfO2-mediated radiosensitization enhances immunogenic cell death to afford tumor associated antigens and adequate cytosolic dsDNA, while the GSH-degradable MnO2 sustainably releases Mn2+ in tumors to improve the recognition sensitization of cGAS. The synchronization of sustained Mn2+ supply with cumulative cytosolic dsDNA damage synergistically augments the cGAS-STING activation in irradiated tumors, thereby enhancing RT-triggered local and system effects when combined with an immune checkpoint inhibitor. Therefore, the synchronous radiosensitization with sustained STING activation is demonstrated as a potent immunostimulation strategy to optimize cancer radio-immuotherapy.


Asunto(s)
Hafnio , Compuestos de Manganeso , Neoplasias , Humanos , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Óxidos/uso terapéutico , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Nucleotidiltransferasas
8.
J Pathol ; 262(4): 427-440, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38229567

RESUMEN

Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Cerebelosas , Anemia de Fanconi , Ferroptosis , Meduloblastoma , Ratones , Animales , Humanos , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ferroptosis/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/radioterapia , Línea Celular Tumoral , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética
9.
Nat Commun ; 15(1): 40, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167292

RESUMEN

The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.


Asunto(s)
Glioma , Isomerasa de Peptidilprolil , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Sumoilación , Isomerismo , Fosforilación , Glioma/genética , Células Madre Neoplásicas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
10.
Autophagy ; 20(2): 295-310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712615

RESUMEN

ABBREVIATIONS: AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.


Asunto(s)
Glioblastoma , Piperazinas , Humanos , Proteína Sequestosoma-1/metabolismo , Autofagia , Ftalazinas/farmacología , Proteínas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Cardiol Plus ; 8(3): 159-166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928775

RESUMEN

Heart dysfunction is one of the most life-threatening organ dysfunctions caused by coronavirus disease 2019 (COVID-19). Myocardial or cardiovascular damage is the most common extrapulmonary organ complication in critically ill patients. Understanding the pathogenesis and pathological characteristics of myocardial and vascular injury is important for improving clinical diagnosis and treatment approach. Herein, the mechanism of direct damage caused by severe acute respiratory syndrome coronavirus 2 to the heart and secondary damage caused by virus-driven inflammation was reviewed. The pathological mechanism of ischemia and hypoxia due to microthrombosis and inflammatory injury as well as the injury mechanism of tissue inflammation and single myocardial cell necrosis triggered by the viral infection of pericytes or macrophages, hypoxia, and energy metabolism disorders were described. The latter can provide a novel diagnosis, treatment, and investigation strategy for heart dysfunctions caused by COVID-19 or the Omicron variant.

12.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948998

RESUMEN

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Insuficiencia Respiratoria , Humanos , COVID-19/complicaciones , COVID-19/patología , Fibrosis Pulmonar/patología , Autopsia , SARS-CoV-2 , Pulmón/patología , Macrófagos/patología , Insuficiencia Respiratoria/patología , Apoptosis
13.
Adv Sci (Weinh) ; 10(35): e2305550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37828611

RESUMEN

Effective treatment for metastasis, a leading cause of cancer-associated death, is still lacking. To seed on a distal organ, disseminated cancer cells (DCCs) must adapt to the local tissue microenvironment. However, it remains elusive how DCCs respond the pro-metastatic niche signals. Here, systemic motif-enrichment identified myocyte enhancer factor 2D (MEF2D) as a critical sensor of niche signals to regulate DCCs adhesion and colonization, leading to intrahepatic metastasis and recurrence of liver cancer. In this context, MEF2D transactivates Itgb1 (coding ß1-integrin) and Itgb4 (coding ß4-integrin) to execute temporally unique functions, where ITGB1 recognizes extracellular matrix for early seeding, and ITGB4 acts as a novel sensor of neutrophil extracellular traps-DNA (NETs-DNA) for subsequent chemotaxis and colonization. In turn, an integrin-FAK circuit promotes a phosphorylation-dependent USP14-orchastrated deubiquitination switch to stabilize MEF2D via circumventing degradation by the E3-ubiquitin-ligase MDM2. Clinically, the USP14(pS432)-MEF2D-ITGB1/4 feedback loop is often hyper-active and indicative of inferior outcomes in human malignancies, while its blockade abrogated intrahepatic metastasis of DCCs. Together, DCCs exploit a deubiquitination-dependent switch on MEF2D to integrate niche signals in the liver mesenchyme, thereby amplifying the pro-metastatic integrin-FAK signaling. Disruption of this feedback loop is clinically applicable with fast-track potential to block microenvironmental cues driving metastasis.


Asunto(s)
Neoplasias Hepáticas , Ubiquitina , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Integrinas , ADN , Microambiente Tumoral , Ubiquitina Tiolesterasa
14.
Am J Pathol ; 193(12): 2111-2121, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741452

RESUMEN

Tumor mutation burden (TMB) is a potential biomarker for evaluating the prognosis and response to immune checkpoint inhibitors, but its costly and time-consuming method of measurement limits its widespread application. This study aimed to identify the TMB-related histopathologic features from hematoxylin and eosin slides and explore their prognostic value in gliomas. TMB-related features were detected using a graph convolutional neural network from whole-slide images of patients from The Cancer Genome Atlas data set (619 patients), and the correlation between features and TMB was evaluated in an external validation set (237 patients). TMB-related features were used for predicting overall survival (OS) of patients to investigate whether these features have potential for prognostic prediction. Moreover, biological pathways underlying the prognostic value of the features were further explored. Histopathologic features derived from whole-slide images were significantly associated with patient TMB (P = 0.007 in the external validation set). TMB-related features showed excellent performance for OS prediction, and patients with lower-grade gliomas could be further stratified into different risk groups according to the features (P = 0.00013; hazard ratio, 4.004). Pathways involved in the cell cycle and execution of immune response were enriched in patients with higher OS risk. The TMB-related features could be used to estimate TMB and aid in prognostic risk stratification of patients with glioma with dysregulated biological pathways.


Asunto(s)
Aprendizaje Profundo , Glioma , Humanos , Glioma/genética , Ciclo Celular , División Celular , Mutación , Biomarcadores de Tumor , Pronóstico
15.
Front Oncol ; 13: 1175279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274229

RESUMEN

Primary pulmonary hyalinizing clear cell carcinoma (HCCC) is a rare salivary gland-type tumor newly recognized in recent years, with approximately 21 cases reported to date in the English literature, which constitutes a challenge in pathology diagnosis, particularly in small biopsy specimens. Here, we present a case of pulmonary HCCC diagnosed by computed tomography-guided percutaneous lung biopsy in a 70-year-old man's right lower lung. Although the morphology and immunophenotype of the tumor suggested the diagnosis of mucoepidermoid carcinoma, fluorescence in situ hybridization failed to reveal the rearrangement of MAML2 gene, which is characteristic of mucoepidermoid carcinoma. Instead, further molecular genetic testing showed that the tumor harbored a rare EWSR1::CREM fusion combined with a previously unreported IRF2::NTRK3 fusion. Pulmonary HCCC is commonly regarded as a low-grade malignant tumor with an indolent course, but this case has a different biological behavior, presenting extensive dissemination and metastases at the time of diagnosis, which expands our understanding of the prognosis of this tumor. The patient has had five cycles of combination chemotherapy and has been alive with the tumor for eight months.

16.
ACS Nano ; 17(14): 13195-13210, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37256771

RESUMEN

Radiotherapy (RT) is one of the important clinical treatments for local control of triple-negative breast cancer (TNBC), but radioresistance still exists. Ferroptosis has been recognized as a natural barrier for cancer progression and represents a significant role of RT-mediated anticancer effects, while the simultaneous activation of ferroptosis defensive system during RT limits the synergistic effect between RT and ferroptosis. Herein, we engineered a tumor microenvironment (TME) degradable nanohybrid with a dual radiosensitization manner to combine ferroptosis induction and high-Z effect based on metal-organic frameworks for ferroptosis-augmented RT of TNBC. The encapsulated l-buthionine-sulfoximine (BSO) could inhibit glutathione (GSH) biosynthesis for glutathione peroxidase 4 (GPX4) inactivation to break down the ferroptosis defensive system, and the delivered ferrous ions could act as a powerful ferroptosis executor via triggering the Fenton reaction; the combination of them induces potent ferroptosis, which could synergize with the surface decorated Gold (Au) NPs-mediated radiosensitization to improve RT efficacy. In vivo antitumor results revealed that the nanohybrid could significantly improve the therapeutic efficacy and antimetastasis efficiency based on the combinational mechanism between ferroptosis and RT. This work thus demonstrated that combining RT with efficient ferroptosis induction through nanotechnology was a feasible and promising strategy for TNBC treatment.


Asunto(s)
Ferroptosis , Neoplasias de la Mama Triple Negativas , Humanos , Anestésicos Locales , Butionina Sulfoximina , Fibrinolíticos , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
17.
Cell Death Dis ; 14(4): 233, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005412

RESUMEN

Necroptosis plays a double-edged sword role in necroptotic cancer cell death and tumor immune escape. How cancer orchestrates necroptosis with immune escape and tumor progression remains largely unclear. We found that RIP3, the central activator of necroptosis, was methylated by PRMT1 methyltransferase at the amino acid of RIP3 R486 in human and the conserved amino acid R479 in mouse. The methylation of RIP3 by PRMT1 inhibited the interaction of RIP3 with RIP1 to suppress RIP1-RIP3 necrosome complex, thereby blocking RIP3 phosphorylation and necroptosis activation. Moreover, the methylation-deficiency RIP3 mutant promoted necroptosis, immune escape and colon cancer progression due to increasing tumor infiltrated myeloid-derived immune suppressor cells (MDSC), while PRMT1 reverted the immune escape of RIP3 necroptotic colon cancer. Importantly, we generated a RIP3 R486 di-methylation specific antibody (RIP3ADMA). Clinical patient samples analysis revealed that the protein levels of PRMT1 and RIP3ADMA were positively correlated in cancer tissues and both of them predicted the longer patient survival. Our study provides insights into the molecular mechanism of PRMT1-mediated RIP3 methylation in the regulation of necroptosis and colon cancer immunity, as well as reveals PRMT1 and RIP3ADMA as the valuable prognosis markers of colon cancer.


Asunto(s)
Neoplasias del Colon , Transducción de Señal , Animales , Humanos , Ratones , Apoptosis/fisiología , Neoplasias del Colon/genética , Metilación , Metiltransferasas/metabolismo , Necrosis , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Represoras/metabolismo
18.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36963400

RESUMEN

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Asunto(s)
Glioma , Inhibidores de Puntos de Control Inmunológico , Interleucina-8 , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Interleucina-8/metabolismo , Linfocitos T , Microambiente Tumoral
19.
Cell Res ; 33(3): 215-228, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627348

RESUMEN

Only a small proportion of patients with triple-negative breast cancer benefit from immune checkpoint inhibitor (ICI) targeting PD-1/PD-L1 signaling in combination with chemotherapy. Here, we discovered that therapeutic response to ICI plus paclitaxel was associated with subcellular redistribution of PD-L1. In our immunotherapy cohort of ICI in combination with nab-paclitaxel, tumor samples from responders showed significant distribution of PD-L1 at mitochondria, while non-responders showed increased accumulation of PD-L1 on tumor cell membrane instead of mitochondria. Our results also revealed that the distribution pattern of PD-L1 was regulated by an ATAD3A-PINK1 axis. Mechanistically, PINK1 recruited PD-L1 to mitochondria for degradation via a mitophagy pathway. Importantly, paclitaxel increased ATAD3A expression to disrupt proteostasis of PD-L1 by restraining PINK1-dependent mitophagy. Clinically, patients with tumors exhibiting high expression of ATAD3A detected before the treatment with ICI in combination with paclitaxel had markedly shorter progression-free survival compared with those with ATAD3A-low tumors. Preclinical results further demonstrated that targeting ATAD3A reset a favorable antitumor immune microenvironment and increased the efficacy of combination therapy of ICI plus paclitaxel. In summary, our results indicate that ATAD3A serves not only as a resistant factor for the combination therapy of ICI plus paclitaxel through preventing PD-L1 mitochondrial distribution, but also as a promising target for increasing the therapeutic responses to chemoimmunotherapy.


Asunto(s)
Antígeno B7-H1 , Mitofagia , Humanos , ATPasas Asociadas con Actividades Celulares Diversas , Inmunoterapia , Proteínas de la Membrana , Mitocondrias , Proteínas Mitocondriales , Paclitaxel/farmacología , Proteínas Quinasas
20.
Signal Transduct Target Ther ; 8(1): 24, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609561

RESUMEN

Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor ß receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.


Asunto(s)
COVID-19 , Encefalitis , Humanos , Monocitos , COVID-19/genética , Autopsia , Proteómica , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA