Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
PNAS Nexus ; 3(7): pgae270, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035037

RESUMEN

Triadic interactions are higher-order interactions which occur when a set of nodes affects the interaction between two other nodes. Examples of triadic interactions are present in the brain when glia modulate the synaptic signals among neuron pairs or when interneuron axo-axonic synapses enable presynaptic inhibition and facilitation, and in ecosystems when one or more species can affect the interaction among two other species. On random graphs, triadic percolation has been recently shown to turn percolation into a fully fledged dynamical process in which the size of the giant component undergoes a route to chaos. However, in many real cases, triadic interactions are local and occur on spatially embedded networks. Here, we show that triadic interactions in spatial networks induce a very complex spatio-temporal modulation of the giant component which gives rise to triadic percolation patterns with significantly different topology. We classify the observed patterns (stripes, octopus, and small clusters) with topological data analysis and we assess their information content (entropy and complexity). Moreover, we illustrate the multistability of the dynamics of the triadic percolation patterns, and we provide a comprehensive phase diagram of the model. These results open new perspectives in percolation as they demonstrate that in presence of spatial triadic interactions, the giant component can acquire a time-varying topology. Hence, this work provides a theoretical framework that can be applied to model realistic scenarios in which the giant component is time dependent as in neuroscience.

2.
Phys Rev E ; 109(5-1): 054305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907445

RESUMEN

Network science provides very powerful tools for extracting information from interacting data. Although recently the unsupervised detection of phases of matter using machine learning has raised significant interest, the full prediction power of network science has not yet been systematically explored in this context. Here we fill this gap by providing an in-depth statistical, combinatorial, geometrical, and topological characterization of 2D Ising snapshot networks (IsingNets) extracted from Monte Carlo simulations of the 2D Ising model at different temperatures, going across the phase transition. Our analysis reveals the complex organization properties of IsingNets in both the ferromagnetic and paramagnetic phases and demonstrates the significant deviations of the IsingNets with respect to randomized null models. In particular percolation properties of the IsingNets reflect the existence of the symmetry between configurations with opposite magnetization below the critical temperature and the very compact nature of the two emerging giant clusters revealed by our persistent homology analysis of the IsingNets. Moreover, the IsingNets display a very broad degree distribution and significant degree-degree correlations and weight-degree correlations demonstrating that they encode relevant information present in the configuration space of the 2D Ising model. The geometrical organization of the critical IsingNets is reflected in their spectral properties deviating from the one of the null model. This work reveals the important insights that network science can bring to the characterization of phases of matter. The set of tools described hereby can be applied as well to numerical and experimental data.

3.
Phys Rev E ; 109(1-1): 014307, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366447

RESUMEN

Hypergraphs are higher-order networks that capture the interactions between two or more nodes. Hypergraphs can always be represented by factor graphs, i.e., bipartite networks between nodes and factor nodes (representing groups of nodes). Despite this universal representation, here we reveal that k-core percolation on hypergraphs can be significantly distinct from k-core percolation on factor graphs. We formulate the theory of hypergraph k-core percolation based on the assumption that a hyperedge can be intact only if all its nodes are intact. This scenario applies, for instance, to supply chains where the production of a product requires all raw materials and all processing steps; in biology it applies to protein-interaction networks where protein complexes can function only if all the proteins are present; and it applies as well to chemical reaction networks where a chemical reaction can take place only when all the reactants are present. Formulating a message-passing theory for hypergraph k-core percolation, and combining it with the theory of critical phenomena on networks, we demonstrate sharp differences with previously studied factor graph k-core percolation processes where it is allowed for hyperedges to have one or more damaged nodes and still be intact. To solve the dichotomy between k-core percolation on hypegraphs and on factor graphs, we define a set of pruning processes that act either exclusively on nodes or exclusively on hyperedges and depend on their second-neighborhood connectivity. We show that the resulting second-neighbor k-core percolation problems are significantly distinct from each other. Moreover we reveal that although these processes remain distinct from factor graphs k-core processes, when the pruning process acts exclusively on hyperedges the phase diagram is reduced to the one of factor graph k-cores.

4.
Phys Rev E ; 109(1-1): 014306, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366459

RESUMEN

Hypergraphs capture the higher-order interactions in complex systems and always admit a factor graph representation, consisting of a bipartite network of nodes and hyperedges. As hypegraphs are ubiquitous, investigating hypergraph robustness is a problem of major research interest. In the literature the robustness of hypergraphs so far only has been treated adopting factor-graph percolation, which describes well higher-order interactions which remain functional even after the removal of one of more of their nodes. This approach, however, fall short to describe situations in which higher-order interactions fail when any one of their nodes is removed, this latter scenario applying, for instance, to supply chains, catalytic networks, protein-interaction networks, networks of chemical reactions, etc. Here we show that in these cases the correct process to investigate is hypergraph percolation, with is distinct from factor graph percolation. We build a message-passing theory of hypergraph percolation, and we investigate its critical behavior using generating function formalism supported by Monte Carlo simulations on random graph and real data. Notably, we show that the node percolation threshold on hypergraphs exceeds node percolation threshold on factor graphs. Furthermore we show that differently from what happens in ordinary graphs, on hypergraphs the node percolation threshold and hyperedge percolation threshold do not coincide, with the node percolation threshold exceeding the hyperedge percolation threshold. These results demonstrate that any fat-tailed cardinality distribution of hyperedges cannot lead to the hyper-resilience phenomenon in hypergraphs in contrast to their factor graphs, where the divergent second moment of a cardinality distribution guarantees zero percolation threshold.

5.
J Neurosci ; 43(34): 5989-5995, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612141

RESUMEN

The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity. Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper understanding of the brain and its functions, as well as offering new challenges for network science.


Asunto(s)
Neurociencias , Humanos , Encéfalo , Impulso (Psicología) , Neuronas , Investigadores
6.
Sci Rep ; 13(1): 11183, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433870

RESUMEN

Molecular representations are of fundamental importance for the modeling and analysing molecular systems. The successes in drug design and materials discovery have been greatly contributed by molecular representation models. In this paper, we present a computational framework for molecular representation that is mathematically rigorous and based on the persistent Dirac operator. The properties of the discrete weighted and unweighted Dirac matrix are systematically discussed, and the biological meanings of both homological and non-homological eigenvectors are studied. We also evaluate the impact of various weighting schemes on the weighted Dirac matrix. Additionally, a set of physical persistent attributes that characterize the persistence and variation of spectrum properties of Dirac matrices during a filtration process is proposed to be molecular fingerprints. Our persistent attributes are used to classify molecular configurations of nine different types of organic-inorganic halide perovskites. The combination of persistent attributes with gradient boosting tree model has achieved great success in molecular solvation free energy prediction. The results show that our model is effective in characterizing the molecular structures, demonstrating the power of our molecular representation and featurization approach.

7.
Phys Rev Lett ; 130(18): 187401, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204901

RESUMEN

Topological signals, i.e., dynamical variables defined on nodes, links, triangles, etc. of higher-order networks, are attracting increasing attention. However, the investigation of their collective phenomena is only at its infancy. Here we combine topology and nonlinear dynamics to determine the conditions for global synchronization of topological signals defined on simplicial or cell complexes. On simplicial complexes we show that topological obstruction impedes odd dimensional signals to globally synchronize. On the other hand, we show that cell complexes can overcome topological obstruction and in some structures signals of any dimension can achieve global synchronization.

8.
ArXiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214134

RESUMEN

The brain is a complex system comprising a myriad of interacting elements, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such intricate systems, offering a framework for integrating multiscale data and complexity. Here, we discuss the application of network science in the study of the brain, addressing topics such as network models and metrics, the connectome, and the role of dynamics in neural networks. We explore the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease, and discuss the potential for collaboration between network science and neuroscience communities. We underscore the importance of fostering interdisciplinary opportunities through funding initiatives, workshops, and conferences, as well as supporting students and postdoctoral fellows with interests in both disciplines. By uniting the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way towards a deeper understanding of the brain and its functions.

9.
Chaos ; 33(3): 033117, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37003807

RESUMEN

We propose Local Dirac Synchronization that uses the Dirac operator to capture the dynamics of coupled nodes and link signals on an arbitrary network. In Local Dirac Synchronization, the harmonic modes of the dynamics oscillate freely while the other modes are interacting non-linearly, leading to a collectively synchronized state when the coupling constant of the model is increased. Local Dirac Synchronization is characterized by discontinuous transitions and the emergence of a rhythmic coherent phase. In this rhythmic phase, one of the two complex order parameters oscillates in the complex plane at a slow frequency (called emergent frequency) in the frame in which the intrinsic frequencies have zero average. Our theoretical results obtained within the annealed approximation are validated by extensive numerical results on fully connected networks and sparse Poisson and scale-free networks. Local Dirac Synchronization on both random and real networks, such as the connectome of Caenorhabditis Elegans, reveals the interplay between topology (Betti numbers and harmonic modes) and non-linear dynamics. This unveils how topology might play a role in the onset of brain rhythms.

10.
Nat Commun ; 14(1): 1308, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894591

RESUMEN

Percolation establishes the connectivity of complex networks and is one of the most fundamental critical phenomena for the study of complex systems. On simple networks, percolation displays a second-order phase transition; on multiplex networks, the percolation transition can become discontinuous. However, little is known about percolation in networks with higher-order interactions. Here, we show that percolation can be turned into a fully fledged dynamical process when higher-order interactions are taken into account. By introducing signed triadic interactions, in which a node can regulate the interactions between two other nodes, we define triadic percolation. We uncover that in this paradigmatic model the connectivity of the network changes in time and that the order parameter undergoes a period doubling and a route to chaos. We provide a general theory for triadic percolation which accurately predicts the full phase diagram on random graphs as confirmed by extensive numerical simulations. We find that triadic percolation on real network topologies reveals a similar phenomenology. These results radically change our understanding of percolation and may be used to study complex systems in which the functional connectivity is changing in time dynamically and in a non-trivial way, such as in neural and climate networks.

11.
Phys Rev E ; 106(3-1): 034319, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266916

RESUMEN

Hypergraphs and simplical complexes both capture the higher-order interactions of complex systems, ranging from higher-order collaboration networks to brain networks. One open problem in the field is what should drive the choice of the adopted mathematical framework to describe higher-order networks starting from data of higher-order interactions. Unweighted simplicial complexes typically involve a loss of information of the data, though having the benefit to capture the higher-order topology of the data. In this work we show that weighted simplicial complexes allow one to circumvent all the limitations of unweighted simplicial complexes to represent higher-order interactions. In particular, weighted simplicial complexes can represent higher-order networks without loss of information, allowing one at the same time to capture the weighted topology of the data. The higher-order topology is probed by studying the spectral properties of suitably defined weighted Hodge Laplacians displaying a normalized spectrum. The higher-order spectrum of (weighted) normalized Hodge Laplacians is studied combining cohomology theory with information theory. In the proposed framework we quantify and compare the information content of higher-order spectra of different dimension using higher-order spectral entropies and spectral relative entropies. The proposed methodology is tested on real higher-order collaboration networks and on the weighted version of the simplicial complex model "Network Geometry with Flavor."

12.
Cell Death Dis ; 13(8): 705, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963860

RESUMEN

Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7-12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca2+ imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7-12 when the threshold for spike initiation is significantly reduced. At DIV 7-12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Glioma , Neoplasias Encefálicas/patología , Exosomas/metabolismo , Glioma/patología , Humanos , Neuronas/patología , Calidad de Vida , Convulsiones/metabolismo , Microambiente Tumoral
13.
Entropy (Basel) ; 24(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35626517

RESUMEN

Maximum entropy network ensembles have been very successful in modelling sparse network topologies and in solving challenging inference problems. However the sparse maximum entropy network models proposed so far have fixed number of nodes and are typically not exchangeable. Here we consider hierarchical models for exchangeable networks in the sparse limit, i.e., with the total number of links scaling linearly with the total number of nodes. The approach is grand canonical, i.e., the number of nodes of the network is not fixed a priori: it is finite but can be arbitrarily large. In this way the grand canonical network ensembles circumvent the difficulties in treating infinite sparse exchangeable networks which according to the Aldous-Hoover theorem must vanish. The approach can treat networks with given degree distribution or networks with given distribution of latent variables. When only a subgraph induced by a subset of nodes is known, this model allows a Bayesian estimation of the network size and the degree sequence (or the sequence of latent variables) of the entire network which can be used for network reconstruction.

14.
Phys Rev E ; 105(3-1): 034310, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35428066

RESUMEN

Exchangeability is a desired statistical property of network ensembles requiring their invariance upon relabeling of the nodes. However, combining sparsity of network ensembles with exchangeability is challenging. Here we propose a statistical physics framework and a Metropolis-Hastings algorithm defining exchangeable sparse network ensembles. The model generates networks with heterogeneous degree distributions by enforcing only global constraints while existing (nonexchangeable) exponential random graphs enforce an extensive number of local constraints. This very general theoretical framework to describe exchangeable networks is here first formulated for uncorrelated simple networks and then it is extended to treat simple networks with degree correlations, directed networks, bipartite networks, and generalized network structures including multiplex networks and simplicial complexes. In particular here we formulate and treat both uncorrelated and correlated exchangeable ensembles of simplicial complexes using statistical mechanics approaches.

15.
Phys Rev E ; 106(6-1): 064314, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671168

RESUMEN

The study of reaction-diffusion systems on networks is of paramount relevance for the understanding of nonlinear processes in systems where the topology is intrinsically discrete, such as the brain. Until now, reaction-diffusion systems have been studied only when species are defined on the nodes of a network. However, in a number of real systems including, e.g., the brain and the climate, dynamical variables are not only defined on nodes but also on links, faces, and higher-dimensional cells of simplicial or cell complexes, leading to topological signals. In this work, we study reaction-diffusion processes of topological signals coupled through the Dirac operator. The Dirac operator allows topological signals of different dimension to interact or cross-diffuse as it projects the topological signals defined on simplices or cells of a given dimension to simplices or cells of one dimension up or one dimension down. By focusing on the framework involving nodes and links, we establish the conditions for the emergence of Turing patterns and we show that the latter are never localized only on nodes or only on links of the network. Moreover, when the topological signals display a Turing pattern their projection does as well. We validate the theory hereby developed on a benchmark network model and on square lattices with periodic boundary conditions.


Asunto(s)
Difusión , Dinámicas no Lineales
16.
Phys Rev E ; 104(5-1): 054302, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942729

RESUMEN

From social interactions to the human brain, higher-order networks are key to describe the underlying network geometry and topology of many complex systems. While it is well known that network structure strongly affects its function, the role that network topology and geometry has on the emerging dynamical properties of higher-order networks is yet to be clarified. In this perspective, the spectral dimension plays a key role since it determines the effective dimension for diffusion processes on a network. Despite its relevance, a theoretical understanding of which mechanisms lead to a finite spectral dimension, and how this can be controlled, still represents a challenge and is the object of intense research. Here, we introduce two nonequilibrium models of hyperbolic higher-order networks and we characterize their network topology and geometry by investigating the intertwined appearance of small-world behavior, δ-hyperbolicity, and community structure. We show that different topological moves, determining the nonequilibrium growth of the higher-order hyperbolic network models, induce tuneable values of the spectral dimension, showing a rich phenomenology which is not displayed in random graph ensembles. In particular, we observe that, if the topological moves used to construct the higher-order network increase the area/volume ratio, then the spectral dimension continuously decreases, while the opposite effect is observed if the topological moves decrease the area/volume ratio. Our work reveals a new link between the geometry of a network and its diffusion properties, contributing to a better understanding of the complex interplay between network structure and dynamics.

17.
Phys Rev Lett ; 127(15): 158301, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678024

RESUMEN

The collocation of individuals in different environments is an important prerequisite for exposure to infectious diseases on a social network. Standard epidemic models fail to capture the potential complexity of this scenario by (1) neglecting the higher-order structure of contacts that typically occur through environments like workplaces, restaurants, and households, and (2) assuming a linear relationship between the exposure to infected contacts and the risk of infection. Here, we leverage a hypergraph model to embrace the heterogeneity of environments and the heterogeneity of individual participation in these environments. We find that combining heterogeneous exposure with the concept of minimal infective dose induces a universal nonlinear relationship between infected contacts and infection risk. Under nonlinear infection kernels, conventional epidemic wisdom breaks down with the emergence of discontinuous transitions, superexponential spread, and hysteresis.

18.
Phys Rev E ; 104(3-1): 034306, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654130

RESUMEN

Higher-order interactions are increasingly recognized as a fundamental aspect of complex systems ranging from the brain to social contact networks. Hypergraphs as well as simplicial complexes capture the higher-order interactions of complex systems and allow us to investigate the relation between their higher-order structure and their function. Here we establish a general framework for assessing hypergraph robustness and we characterize the critical properties of simple and higher-order percolation processes. This general framework builds on the formulation of the random multiplex hypergraph ensemble where each layer is characterized by hyperedges of given cardinality. We observe that in presence of the structural cutoff the ensemble of multiplex hypergraphs can be mapped to an ensemble of multiplex bipartite networks. We reveal the relation between higher-order percolation processes in random multiplex hypergraphs, interdependent percolation of multiplex networks, and K-core percolation. The structural correlations of the random multiplex hypergraphs are shown to have a significant effect on their percolation properties. The wide range of critical behaviors observed for higher-order percolation processes on multiplex hypergraphs elucidates the mechanisms responsible for the emergence of discontinuous transition and uncovers interesting critical properties which can be applied to the study of epidemic spreading and contagion processes on higher-order networks.

19.
Phys Rev E ; 104(6-1): 064303, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030957

RESUMEN

While the study of graphs has been very popular, simplicial complexes are relatively new in the network science community. Despite being a source of rich information, graphs are limited to pairwise interactions. However, several real-world networks such as social networks, neuronal networks, etc., involve interactions between more than two nodes. Simplicial complexes provide a powerful mathematical framework to model such higher-order interactions. It is well known that the spectrum of the graph Laplacian is indicative of community structure, and this relation is exploited by spectral clustering algorithms. Here we propose that the spectrum of the Hodge Laplacian, a higher-order Laplacian defined on simplicial complexes, encodes simplicial communities. We formulate an algorithm to extract simplicial communities (of arbitrary dimension). We apply this algorithm to simplicial complex benchmarks and to real higher-order network data including social networks and networks extracted using language or text processing tools. However, datasets of simplicial complexes are scarce, and for the vast majority of datasets that may involve higher-order interactions, only the set of pairwise interactions are available. Hence, we use known properties of the data to infer the most likely higher-order interactions. In other words, we introduce an inference method to predict the most likely simplicial complex given the community structure of its network skeleton. This method identifies as most likely the higher-order interactions inducing simplicial communities that maximize the adjusted mutual information measured with respect to ground-truth community structure. Finally, we consider higher-order networks constructed through thresholding the edge weights of collaboration networks (encoding only pairwise interactions) and provide an example of persistent simplicial communities that are sustained over a wide range of the threshold.

20.
Phys Rev E ; 102(5-1): 052309, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327169

RESUMEN

Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of time. We prove that such a dynamical pattern is compatible with critical susceptible-infected-removed (SIR) dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a single infected node. The application of containment measures to an ongoing epidemic, however, has the effect to make the system enter in its critical regime with a number of infected individuals potentially large. We describe how such nontrivial starting conditions affect the critical behavior of the SIR model. We perform a theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an increasing function of the initial number of infected individuals, while the expected duration of the outbreak is a nonmonotonic function of the initial number of infected individuals. Also, we precisely characterize the magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics with nontrivial initial conditions. Far from herd immunity, fluctuations are much larger than average values, thus indicating that predictions of plateauing time series may be particularly challenging.


Asunto(s)
COVID-19/epidemiología , Epidemias , Modelos Estadísticos , COVID-19/transmisión , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA