Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biology (Basel) ; 13(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38392334

RESUMEN

Nowadays, the infraorder Delphinida (oceanic dolphins and kin) represents the most diverse extant clade of Cetacea, with delphinids alone accounting for more than 40% of the total number of living cetacean species. As for other cetacean groups, the Early Miocene represents a key interval for the evolutionary history of Delphinida, as it was during this time span that the delphinidans became broadly distributed worldwide, first and foremost with the widespread genus Kentriodon and closely related forms. Here, we report on a new odontocete find from Burdigalian (20.4-19.0 Ma) deposits of the Friulian-Venetian Basin of northeastern Italy, consisting of the partial cranium of a small delphinidan with associated ear bones (right periotic, stapes, malleus and tympanic bulla). Osteoanatomical considerations and comparisons allow us to assign the studied specimen to the genus Kentriodon. This is the first confirmed record of Kentriodon from Europe as well as from the whole proto-Mediterranean region. Stratigraphic and phylogenetic considerations suggest that our new specimen may represent the geologically oldest member of Kentriodon. The evolutionary success of Kentriodon may correlate with the emergence of narrow-band high-frequency echolocation as a possible strategy to escape acoustic detection by large marine predators such as the squalodontids. In addition, the relatively high encephalization quotient of Kentriodon spp. may have provided these early dolphins with some kind of competitive advantage over the coeval non-delphinidan odontocetes.

2.
Life (Basel) ; 13(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895466

RESUMEN

The white shark, Carcharodon carcharias, is the main top predator of the present-day Mediterranean Sea. The deep past of C. carcharias in the Mediterranean is witnessed by a rather conspicuous, mostly Pliocene fossil record. Here, we provide a synthesis of the palaeobiology and palaeoecology of the Mediterranean white sharks. Phenetically modern white shark teeth first appeared around the Miocene-Pliocene transition in the Pacific, and soon after in the Mediterranean. Molecular phylogenetic analyses support an origin of the Mediterranean white shark population from the dispersal of Australian/Pacific palaeopopulations, which may have occurred through the Central American Seaway. Tooth dimensions suggest that the Mediterranean white sharks could have grown up to about 7 m total length during the Pliocene. A richer-than-today marine mammal fauna was likely pivotal in supporting the Mediterranean white sharks through the Pliocene and most of the Quaternary. White sharks have seemingly become more common as other macropredators declined and disappeared, notwithstanding the concurrent demise of many potential prey items in the context of the latest Pliocene and Quaternary climatic and environmental perturbations of the Mediterranean region. The overall generalist trophic habits of C. carcharias were likely crucial for securing ecological success in the highly variable Mediterranean scenario by allowing the transition to a mostly piscivorous diet as the regional marine mammal fauna shrank.

3.
Nature ; 620(7975): 824-829, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532931

RESUMEN

The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus-a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Peso Corporal , Fósiles , Ballenas , Animales , Aclimatación , Perú , Ballenas/anatomía & histología , Ballenas/clasificación , Ballenas/fisiología , Tamaño Corporal , Esqueleto , Buceo
4.
Life (Basel) ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36836683

RESUMEN

Chitons (Polyplacophora) include some of the most conspicuous bioeroders of the present-day shallow seas. Abundant palaeontological evidence for the feeding activity of ancient chitons is preserved in the form of radular traces that are usually found on invertebrate shells and hardgrounds. We report on widespread grazing traces occurring on partial skeletons of the extinct sirenian Metaxytherium subapenninum from the Lower Pliocene (Zanclean) of Arcille (Grosseto Province, Tuscany, Italy). These distinctive ichnofossils are described under the ichnotaxonomic name Osteocallis leonardii isp. nov. and interpreted as reflecting substrate scraping by polyplacophorans. A scrutiny of palaeontological literature reveals that similar traces occur on fossil vertebrates as old as the Upper Cretaceous, suggesting that bone has served as a substrate for chiton feeding for more than 66 million years. Whether these bone modifications reflect algal grazing, carrion scavenging or bone consumption remains unsure, but the first hypothesis appears to be the most parsimonious, as well as the most likely in light of the available actualistic data. As the role of bioerosion in controlling fossilization can hardly be overestimated, further research investigating how grazing organisms contribute to the biostratinomic processes affecting bone promises to disclose new information on how some marine vertebrates manage to become fossils.

5.
PLoS One ; 17(8): e0273122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35960760

RESUMEN

Narwhals and belugas are toothed whales belonging to the Monodontidae. Belugas have a circumpolar Arctic and sub-Artic distribution while narwhals are restricted to the Atlantic Arctic. Their geographical ranges overlap during winter migrations in the Baffin Bay area (Canada/West Greenland) and successful interbreeding may occur. Here, we employed geometric morphometrics on museum specimens to explore the cranium and mandible morphology of a known hybrid (NHMD MCE 1356) and the cranium morphology of a putative hybrid (NHMD 1963.44.1.4) relative to skull morphological variation in the parental species. Specifically, we used 3D models of skulls from 69 belugas, 86 narwhals, and the two known/putative hybrids and 2D left hemi-mandibles from 20 belugas, 64 narwhals and the known hybrid. Skull shape analyses allowed clear discrimination between species. Narwhals are characterised by a relatively short rostrum and wide neurocranium while belugas show a more elongated and narrower cranium. Sexual size dimorphism was detected in narwhals, with males larger than females, but no sexual shape dimorphism was detected in either species (excluding presence/absence of tusks in narwhals). Morphological skull variation was also dependent on different allometric slopes between species and sexes in narwhals. Our analyses showed that the cranium of the known hybrid was phenotypically close to belugas but its 2D hemi-mandible had a narwhal shape and size morphology. Both cranium and mandible were strongly correlated, with the pattern of covariation being similar to belugas. The putative hybrid was a pure male narwhal with extruded teeth. Comparison of genomic DNA supported this result, and stable carbon and nitrogen isotope values suggested that the putative hybrid had a more benthic foraging strategy compared to narwhals. This work demonstrates that although the known hybrid could be discriminated from narwhals and belugas, detection of its affinities with these parental species was dependent on the part of the skull analysed.


Asunto(s)
Ballena Beluga , Animales , Cetáceos , Femenino , Gelatina , Masculino , Fenotipo , Cráneo
6.
Curr Biol ; 32(8): 1843-1851.e2, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35259339

RESUMEN

The killer whale (Orcinus orca) and false killer whale (Pseudorca crassidens) are the only extant cetaceans that hunt other marine mammals, with pods of the former routinely preying on baleen whales >10 m in length and the latter being known to take other delphinids.1-3 Fossil evidence for the origins of this feeding behavior is wanting, although molecular phylogenies indicate that it evolved independently in the two lineages.4 We describe a new extinct representative of the killer whale ecomorph, Rododelphis stamatiadisi, based on a partial skeleton from the Pleistocene of Rhodes (Greece). Five otoliths of the bathypelagic blue whiting Micromesistius poutassou are associated with the holotype, providing unexpected evidence of its last meal. The evolutionary relationships of R. stamatiadisi and the convergent evolution of killer whale-like features were explored through a broad-ranging phylogenetic analysis that recovered R. stamatiadisi as the closest relative of P. crassidens and O. orca as the only living representative of a once diverse clade. Within the clade of Orca and kin, key features implicated in extant killer whale feeding, such as body size, tooth size, and tooth count, evolved in a stepwise manner. The tooth wear in Rododelphis and an extinct species of Orcinus (O. citoniensis) are consistent with a fish-based diet, supporting an exaptative Pleistocene origin for marine mammal hunting in both lineages. If correct, predation by the ancestors of Pseudorca and Orca did not play a significant role in the evolution of baleen whale gigantism. VIDEO ABSTRACT.


Asunto(s)
Orca , Animales , Conducta Alimentaria , Filogenia , Conducta Predatoria , Ballenas
7.
PLoS One ; 16(7): e0254395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264979

RESUMEN

The Miocene Pisco Formation, broadly exposed in the Ica Desert of southern Peru, is among the most outstanding Cenozoic marine Fossil-Lagerstätten worldwide. It is renowned for its exceptional preservation and abundance of vertebrate fossils, including a rich assemblage of whales and dolphins (Cetacea). Here, we integrate taphonomic data on 890 marine vertebrate fossils, gathered through 16 different localities. Our observations range from the taxonomic distribution, articulation, completeness, disposition and orientation of skeletons, to the presence of bite marks, associations with shark teeth and macro-invertebrates, bone and soft tissue preservation, and the formation of attendant carbonate concretions and sedimentary structures. We propose that the exceptional preservation characterising many Pisco vertebrates, as well as their exceptionally high abundance, cannot be ascribed to a single cause like high sedimentation rates (as proposed in the past), but rather to the interplay of several favourable factors including: (i) low levels of dissolved oxygen at the seafloor (with the intervention of seasonal anoxic events); (ii) the early onset of mineralisation processes like apatite dissolution/recrystallisation and carbonate mineral precipitation; (iii) rapid burial of carcasses in a soupy substrate and/or a novel mechanism involving scour-induced self-burial; and (iv) original biological richness. Collectively, our observations provide a comprehensive overview of the taphonomic processes that shaped one of South America's most important fossil deposits, and suggest a model for the formation of other marine vertebrate Fossil-Lagerstätten.


Asunto(s)
Fósiles , Animales , Invertebrados , Paleontología , Perú
8.
Life (Basel) ; 10(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197480

RESUMEN

Several aspects of the fascinating evolutionary history of toothed and baleen whales (Cetacea) are still to be clarified due to the fragmentation and discontinuity (in space and time) of the fossil record. Here we open a window on the past, describing a part of the extraordinary cetacean fossil assemblage deposited in a restricted interval of time (19-18 Ma) in the Chilcatay Formation (Peru). All the fossils here examined belong to the Platanistoidea clade as here redefined, a toothed whale group nowadays represented only by the Asian river dolphin Platanista gangetica. Two new genera and species, the hyper-longirostrine Ensidelphis riveroi and the squalodelphinid Furcacetus flexirostrum, are described together with new material referred to the squalodelphinid Notocetus vanbenedeni and fragmentary remains showing affinities with the platanistid Araeodelphis. Our cladistic analysis defines the new clade Platanidelphidi, sister-group to Allodelphinidae and including E. riveroi and the clade Squalodelphinidae + Platanistidae. The fossils here examined further confirm the high diversity and disparity of platanistoids during the early Miocene. Finally, morphofunctional considerations on the entire platanistoid assemblage of the Chilcatay Formation suggest a high trophic partitioning of this peculiar cetacean paleocommunity.

9.
J Anat ; 236(1): 98-104, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498900

RESUMEN

Ethmoturbinates, nasoturbinates, and maxilloturbinates are well developed in the narial tract of land-dwelling artiodactyls ancestral to whales, but these are greatly reduced or lost entirely in modern whales. Aegyptocetus tarfa is a semiaquatic protocetid from the middle Eocene of Egypt. Computed axial tomography scans of the skull show that A. tarfa retained all three sets of turbinates like a land mammal. It is intermediate between terrestrial artiodactyls and aquatic whales in reduction of the turbinates. Ethmoturbinates in A. tarfa have 26% of the surface area expected for an artiodactyl. These have an olfactory function and indicate that early whales retained a sense of smell in the transition from land to sea. Maxilloturbinates in A. tarfa have 6% of the surface area expected for an artiodactyl. These have a respiratory function and their markedly reduced size suggests that rapid inhalation and exhalation was already more important than warming and humidifying air, in contrast to extant land mammals. Finally, the maxilloturbinates of A. tarfa, although greatly reduced, still show some degree of similarity to those of artiodactyls, supporting the phylogenetic affinity of cetaceans and artiodactyls based on morphological and molecular evidence.


Asunto(s)
Evolución Biológica , Cráneo/anatomía & histología , Cornetes Nasales/anatomía & histología , Ballenas/anatomía & histología , Animales , Fósiles , Filogenia
10.
Biol Lett ; 15(5): 20190175, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31039728

RESUMEN

Baleen whales (Mysticeti) are major ecosystem engineers, thanks to their enormous size and bulk filter feeding strategy. Their signature gigantism is thought to be a relatively recent phenomenon, resulting from a Plio-Pleistocene mode shift in their body size evolution. Here, we report the largest whale fossil ever described: an Early Pleistocene (1.5-1.25 Ma) blue whale from Italy with an estimated body length of up to 26 m. Macroevolutionary modelling taking into account this specimen, as well as additional material from the Miocene of Peru, reveals that the proposed mode shift occurred either somewhat earlier, or perhaps not at all. Large-sized mysticetes comparable to most extant species have existed since at least the Late Miocene, suggesting a long-term impact on global marine ecosystems.


Asunto(s)
Ecosistema , Gigantismo , Animales , Tamaño Corporal , Fósiles , Humanos , Italia
11.
Curr Biol ; 29(8): 1352-1359.e3, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30955933

RESUMEN

Cetaceans originated in south Asia more than 50 million years ago (mya), from a small quadrupedal artiodactyl ancestor [1-3]. Amphibious whales gradually dispersed westward along North Africa and arrived in North America before 41.2 mya [4]. However, fossil evidence on when, through which pathway, and under which locomotion abilities these early whales reached the New World is fragmentary and contentious [5-7]. Peregocetus pacificus gen. et sp. nov. is a new protocetid cetacean discovered in middle Eocene (42.6 mya) marine deposits of coastal Peru, which constitutes the first indisputable quadrupedal whale record from the Pacific Ocean and the Southern Hemisphere. Preserving the mandibles and most of the postcranial skeleton, this unique four-limbed whale bore caudal vertebrae with bifurcated and anteroposteriorly expanded transverse processes, like those of beavers and otters, suggesting a significant contribution of the tail during swimming. The fore- and hind-limb proportions roughly similar to geologically older quadrupedal whales from India and Pakistan, the pelvis being firmly attached to the sacrum, an insertion fossa for the round ligament on the femur, and the retention of small hooves with a flat anteroventral tip at fingers and toes indicate that Peregocetus was still capable of standing and even walking on land. This new record from the southeastern Pacific demonstrates that early quadrupedal whales crossed the South Atlantic and nearly attained a circum-equatorial distribution with a combination of terrestrial and aquatic locomotion abilities less than 10 million years after their origin and probably before a northward dispersal toward higher North American latitudes. VIDEO ABSTRACT.


Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Natación , Caminata , Ballenas/fisiología , Animales , Perú , Filogenia , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/fisiología , Ballenas/anatomía & histología
12.
R Soc Open Sci ; 5(4): 172302, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29765678

RESUMEN

The South Asian river dolphin (Platanista gangetica) is the only extant survivor of the large clade Platanistoidea, having a well-diversified fossil record from the Late Oligocene to the Middle Miocene. Based on a partial skeleton collected from the Chilcatay Formation (Chilcatay Fm; southern coast of Peru), we report here a new squalodelphinid genus and species, Macrosqualodelphis ukupachai. A volcanic ash layer, sampled near the fossil, yielded the 40Ar/39Ar age of 18.78 ± 0.08 Ma (Burdigalian, Early Miocene). The phylogenetic analysis places Macrosqualodelphis as the earliest branching squalodelphinid. Combined with several cranial and dental features, the large body size (estimated body length of 3.5 m) of this odontocete suggests that it consumed larger prey than the other members of its family. Together with Huaridelphis raimondii and Notocetus vanbenedeni, both also found in the Chilcatay Fm, this new squalodelphinid further demonstrates the peculiar local diversity of the family along the southeastern Pacific coast, possibly related to their partition into different dietary niches. At a wider geographical scale, the morphological and ecological diversity of squalodelphinids confirms the major role played by platanistoids during the Early Miocene radiation of crown odontocetes.

13.
Curr Biol ; 27(19): R1058-R1059, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-29017038

RESUMEN

The pygmy right whale, Caperea marginata, is the most enigmatic living whale. Little is known about its ecology and behaviour, but unusual specialisations of visual pigments [1], mitochondrial tRNAs [2], and postcranial anatomy [3] suggest a lifestyle different from that of other extant whales. Geographically, Caperea represents the only major baleen whale lineage entirely restricted to the Southern Ocean. Caperea-like fossils, the oldest of which date to the Late Miocene, are exceedingly rare and likewise limited to the Southern Hemisphere [4], despite a more substantial history of fossil sampling north of the equator. Two new Pleistocene fossils now provide unexpected evidence of a brief and relatively recent period in geological history when Caperea occurred in the Northern Hemisphere (Figure 1A,B).


Asunto(s)
Distribución Animal , Fósiles/anatomía & histología , Ballenas/fisiología , Animales , Japón , Sicilia , Ballenas/anatomía & histología , Ballenas/clasificación
14.
Curr Biol ; 27(10): 1535-1541.e2, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28502655

RESUMEN

Although combined molecular and morphological analyses point to a late middle Eocene (38-39 million years ago) origin for the clade Neoceti (Odontoceti, echolocating toothed whales plus Mysticeti, baleen whales, and relatives), the oldest known mysticete fossil dates from the latest Eocene (about 34 million years ago) of Antarctica [1, 2]. Considering that the latter is not the most stemward mysticete in recent phylogenies and that Oligocene toothed mysticetes display a broad morphological disparity most likely corresponding to contrasted ecological niches, the origin of mysticetes from a basilosaurid ancestor and its drivers are currently poorly understood [1, 3-8]. Based on an articulated cetacean skeleton from the early late Eocene (Priabonian, around 36.4 million years ago) of the Pisco Basin, Peru, we describe a new archaic tooth-bearing mysticete, Mystacodon selenensis gen. et sp. nov. Being the geologically oldest neocete (crown group cetacean) and the earliest mysticete to branch off described so far, the new taxon is interpreted as morphologically intermediate between basilosaurids and later toothed mysticetes, providing thus crucial information about the anatomy of the skull, forelimb, and innominate at these critical initial stages of mysticete evolution. Major changes in the morphology of the oral apparatus (including tooth wear) and flipper compared to basilosaurids suggest that suction and possibly benthic feeding represented key, early ecological traits accompanying the emergence of modern filter-feeding baleen whales' ancestors.


Asunto(s)
Evolución Biológica , Conducta Alimentaria , Fósiles/anatomía & histología , Ballenas/anatomía & histología , Animales , Filogenia , Diente/anatomía & histología , Ballenas/fisiología
15.
J Anat ; 231(2): 212-220, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28542839

RESUMEN

Baleen is a comb-like structure that enables mysticete whales to bulk feed on vast quantities of small prey, and ultimately allowed them to become the largest animals on Earth. Because baleen rarely fossilises, extremely little is known about its evolution, structure and function outside the living families. Here we describe, for the first time, the exceptionally preserved baleen apparatus of an entirely extinct mysticete morphotype: the Late Miocene cetotheriid, Piscobalaena nana, from the Pisco Formation of Peru. The baleen plates of P. nana are closely spaced and built around relatively dense, fine tubules, as in the enigmatic pygmy right whale, Caperea marginata. Phosphatisation of the intertubular horn, but not the tubules themselves, suggests in vivo intertubular calcification. The size of the rack matches the distribution of nutrient foramina on the palate, and implies the presence of an unusually large subrostral gap. Overall, the baleen morphology of Piscobalaena likely reflects the interacting effects of size, function and phylogeny, and reveals a previously unknown degree of complexity in modern mysticete feeding evolution.


Asunto(s)
Ballenas/anatomía & histología , Animales , Fósiles
16.
PeerJ ; 4: e2479, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688973

RESUMEN

The Ziphiidae (beaked whales) represent a large group of open-ocean odontocetes (toothed cetaceans), whose elusive and deep diving behavior prevents direct observation in their natural habitat. Despite their generally large body size, broad geographical distribution, and high species number, ziphiids thus remain poorly known. Furthermore, the evolutionary processes that have led to their extreme adaptations and impressive extant diversity are still poorly understood. Here we report new fossil beaked whales from the late Miocene of the Pisco Formation (southern Peru). The best preserved remains here described are referred to two new genera and species, the Messinian Chavinziphius maxillocristatus and the Tortonian Chimuziphius coloradensis, based on skull remains from two marine vertebrate-rich localities: Cerro Los Quesos and Cerro Colorado, respectively. C. maxillocristatus is medium sized retains a complete set of functional lower teeth, and bears robust rostral maxillary crests similar to those of the extant Berardius. By contrast, C. coloradensis is small and characterized by large triangular nasals and moderately thickened premaxillae that dorsally close the mesorostral groove. Both species confirm the high past diversity of Ziphiidae, the richest cetacean family in terms of the number of genera and species. Our new phylogenetic and biogeographical analyses depart markedly from earlier studies in dividing beaked whales into two major clades: the Messapicetus clade, which, along with other stem ziphiids, once dominated the southeastern Pacific and North Atlantic; and crown Ziphiidae, the majority of which are found in deep-water regions of the Southern Ocean, with possible subsequent dispersal both globally (Mesoplodon and Ziphius) and to the cooler waters of the northern oceans (Berardius and Hyperoodon). Despite this relatively clear separation, both lineages seem to follow similar evolutionary trends, including (1) a progressive reduction of dentition; (2) an increase in the compactness and thickness of the rostral bones; (3) similar changes in facial morphology (e.g., elevation of the vertex); and (4) an increase of body size. We suggest that these trends may be linked to a convergent ecological shift to deep diving and suction feeding.

17.
Naturwissenschaften ; 102(11-12): 70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26553062

RESUMEN

Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.


Asunto(s)
Peces/anatomía & histología , Fósiles , Contenido Digestivo , Ballenas , Animales , Huesos/diagnóstico por imagen , Peces/clasificación , Perú , Conducta Predatoria , Microtomografía por Rayos X
18.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354940

RESUMEN

Although modern beaked whales (Ziphiidae) are known to be highly specialized toothed whales that predominantly feed at great depths upon benthic and benthopelagic prey, only limited palaeontological data document this major ecological shift. We report on a ziphiid-fish assemblage from the Late Miocene of Peru that we interpret as the first direct evidence of a predator-prey relationship between a ziphiid and epipelagic fish. Preserved in a dolomite concretion, a skeleton of the stem ziphiid Messapicetus gregarius was discovered together with numerous skeletons of a clupeiform fish closely related to the epipelagic extant Pacific sardine (Sardinops sagax). Based on the position of fish individuals along the head and chest regions of the ziphiid, the lack of digestion marks on fish remains and the homogeneous size of individuals, we propose that this assemblage results from the death of the whale (possibly via toxin poisoning) shortly after the capture of prey from a single school. Together with morphological data and the frequent discovery of fossil crown ziphiids in deep-sea deposits, this exceptional record supports the hypothesis that only more derived ziphiids were regular deep divers and that the extinction of epipelagic forms may coincide with the radiation of true dolphins.


Asunto(s)
Buceo , Fósiles , Ballenas/anatomía & histología , Animales , Evolución Biológica , Peces/anatomía & histología , Conducta Predatoria/fisiología , Ballenas/fisiología
19.
Naturwissenschaften ; 101(6): 517-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24821119

RESUMEN

Several extinct sperm whales (stem Physeteroidea) were recently proposed to differ markedly in their feeding ecology from the suction-feeding modern sperm whales Kogia and Physeter. Based on cranial, mandibular, and dental morphology, these Miocene forms were tentatively identified as macroraptorial feeders, able to consume proportionally large prey using their massive teeth and robust jaws. However, until now, no corroborating evidence for the use of teeth during predation was available. We report on a new specimen of the stem physeteroid Acrophyseter, from the late middle to early late Miocene of Peru, displaying unusual bony outgrowths along some of the upper alveoli. Considering their position and outer shape, these are identified as buccal maxillary exostoses. More developed along posterior teeth and in tight contact with the high portion of the dental root outside the bony alveoli, the exostoses are hypothesized to have developed during powerful bites; they may have worked as buttresses, strengthening the teeth when facing intense occlusal forces. These buccal exostoses further support a raptorial feeding technique for Acrophyseter and, indirectly, for other extinct sperm whales with a similar oral apparatus (Brygmophyseter, Livyatan, Zygophyseter). With a wide size range, these Miocene stem physeteroids were major marine macropredators, occupying ecological niches nowadays mostly taken by killer whales.


Asunto(s)
Conducta Alimentaria/fisiología , Fósiles , Maxilares/anatomía & histología , Cachalote/anatomía & histología , Cachalote/fisiología , Animales , Perú , Conducta Predatoria/fisiología , Diente/anatomía & histología
20.
Nature ; 466(7302): 105-8, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596020

RESUMEN

The modern giant sperm whale Physeter macrocephalus, one of the largest known predators, preys upon cephalopods at great depths. Lacking a functional upper dentition, it relies on suction for catching its prey; in contrast, several smaller Miocene sperm whales (Physeteroidea) have been interpreted as raptorial (versus suction) feeders, analogous to the modern killer whale Orcinus orca. Whereas very large physeteroid teeth have been discovered in various Miocene localities, associated diagnostic cranial remains have not been found so far. Here we report the discovery of a new giant sperm whale from the Middle Miocene of Peru (approximately 12-13 million years ago), Leviathan melvillei, described on the basis of a skull with teeth and mandible. With a 3-m-long head, very large upper and lower teeth (maximum diameter and length of 12 cm and greater than 36 cm, respectively), robust jaws and a temporal fossa considerably larger than in Physeter, this stem physeteroid represents one of the largest raptorial predators and, to our knowledge, the biggest tetrapod bite ever found. The appearance of gigantic raptorial sperm whales in the fossil record coincides with a phase of diversification and size-range increase of the baleen-bearing mysticetes in the Miocene. We propose that Leviathan fed mostly on high-energy content medium-size baleen whales. As a top predator, together with the contemporaneous giant shark Carcharocles megalodon, it probably had a profound impact on the structuring of Miocene marine communities. The development of a vast supracranial basin in Leviathan, extending on the rostrum as in Physeter, might indicate the presence of an enlarged spermaceti organ in the former that is not associated with deep diving or obligatory suction feeding.


Asunto(s)
Fósiles , Mandíbula/anatomía & histología , Cachalote/anatomía & histología , Diente/anatomía & histología , Animales , Evolución Biológica , Mandíbula/fisiología , Perú , Filogenia , Conducta Predatoria/fisiología , Cachalote/clasificación , Cachalote/fisiología , Diente/fisiología , Orca/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA