Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798410

RESUMEN

Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the demands of perception. Being a more continuous/gradient as opposed to a discrete/categorical listener may be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving ambiguity. The degree to which a listener's responses to a continuum of speech sounds are categorical versus continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded event-related brain potentials (ERPs) to vowels along an acoustic-phonetic continuum (/u/ to /a/) while listeners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that promote discrete (2AFC) vs. continuous (VAS) hearing, respectively. Behaviorally, identification curves were steeper under 2AFC vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic categories even under signal degradation. Behavioral slopes were positively correlated with listeners' QuickSIN scores, suggesting a behavioral advantage for speech in noise comprehension conferred by gradient listening strategy. At the neural level, electrode level data revealed P2 peak amplitudes of the ERPs were modulated by task and noise; responses were larger under VAS vs. 2AFC categorization and showed larger noise-related delay in latency in the VAS vs. 2AFC condition. More gradient responders also had smaller shifts in ERP latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Interestingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural responses in left superior temporal gyrus. Our results demonstrate that listening strategy (i.e., being a discrete vs. continuous listener) modulates the categorical organization of speech and behavioral success, with continuous/gradient listening being more advantageous to speech in noise perception.

2.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38617284

RESUMEN

Our perceptual system bins elements of the speech signal into categories to make speech perception manageable. Here, we aimed to test whether hearing speech in categories (as opposed to a continuous/gradient fashion) affords yet another benefit to speech recognition: parsing noisy speech at the "cocktail party." We measured speech recognition in a simulated 3D cocktail party environment. We manipulated task difficulty by varying the number of additional maskers presented at other spatial locations in the horizontal soundfield (1-4 talkers) and via forward vs. time-reversed maskers, promoting more and less informational masking (IM), respectively. In separate tasks, we measured isolated phoneme categorization using two-alternative forced choice (2AFC) and visual analog scaling (VAS) tasks designed to promote more/less categorical hearing and thus test putative links between categorization and real-world speech-in-noise skills. We first show that listeners can only monitor up to ~3 talkers despite up to 5 in the soundscape and streaming is not related to extended high-frequency hearing thresholds (though QuickSIN scores are). We then confirm speech streaming accuracy and speed decline with additional competing talkers and amidst forward compared to reverse maskers with added IM. Dividing listeners into "discrete" vs. "continuous" categorizers based on their VAS labeling (i.e., whether responses were binary or continuous judgments), we then show the degree of IM experienced at the cocktail party is predicted by their degree of categoricity in phoneme labeling; more discrete listeners are less susceptible to IM than their gradient responding peers. Our results establish a link between speech categorization skills and cocktail party processing, with a categorical (rather than gradient) listening strategy benefiting degraded speech perception. These findings imply figure-ground deficits common in many disorders might arise through a surprisingly simple mechanism: a failure to properly bin sounds into categories.

3.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400211

RESUMEN

A deviation in the soundness of cognitive health is known as mild cognitive impairment (MCI), and it is important to monitor it early to prevent complicated diseases such as dementia, Alzheimer's disease (AD), and Parkinson's disease (PD). Traditionally, MCI severity is monitored with manual scoring using the Montreal Cognitive Assessment (MoCA). In this study, we propose a new MCI severity monitoring algorithm with regression analysis of extracted features of single-channel electro-encephalography (EEG) data by automatically generating severity scores equivalent to MoCA scores. We evaluated both multi-trial and single-trail analysis for the algorithm development. For multi-trial analysis, 590 features were extracted from the prominent event-related potential (ERP) points and corresponding time domain characteristics, and we utilized the lasso regression technique to select the best feature set. The 13 best features were used in the classical regression techniques: multivariate regression (MR), ensemble regression (ER), support vector regression (SVR), and ridge regression (RR). The best results were observed for ER with an RMSE of 1.6 and residual analysis. In single-trial analysis, we extracted a time-frequency plot image from each trial and fed it as an input to the constructed convolutional deep neural network (CNN). This deep CNN model resulted an RMSE of 2.76. To our knowledge, this is the first attempt to generate automated scores for MCI severity equivalent to MoCA from single-channel EEG data with multi-trial and single data.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Disfunción Cognitiva/diagnóstico , Análisis de Regresión , Electroencefalografía/métodos , Gravedad del Paciente
4.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253583

RESUMEN

The neural mechanisms underlying the exogenous coding and neural entrainment to repetitive auditory stimuli have seen a recent surge of interest. However, few studies have characterized how parametric changes in stimulus presentation alter entrained responses. We examined the degree to which the brain entrains to repeated speech (i.e., /ba/) and nonspeech (i.e., click) sounds using phase-locking value (PLV) analysis applied to multichannel human electroencephalogram (EEG) data. Passive cortico-acoustic tracking was investigated in N = 24 normal young adults utilizing EEG source analyses that isolated neural activity stemming from both auditory temporal cortices. We parametrically manipulated the rate and periodicity of repetitive, continuous speech and click stimuli to investigate how speed and jitter in ongoing sound streams affect oscillatory entrainment. Neuronal synchronization to speech was enhanced at 4.5 Hz (the putative universal rate of speech) and showed a differential pattern to that of clicks, particularly at higher rates. PLV to speech decreased with increasing jitter but remained superior to clicks. Surprisingly, PLV entrainment to clicks was invariant to periodicity manipulations. Our findings provide evidence that the brain's neural entrainment to complex sounds is enhanced and more sensitized when processing speech-like stimuli, even at the syllable level, relative to nonspeech sounds. The fact that this specialization is apparent even under passive listening suggests a priority of the auditory system for synchronizing to behaviorally relevant signals.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Adulto Joven , Humanos , Estimulación Acústica , Percepción del Habla/fisiología , Sonido , Electroencefalografía , Periodicidad , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología
5.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212291

RESUMEN

Plasticity from auditory experience shapes the brain's encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ~ 45 min training sessions recorded simultaneously with high-density electroencephalography (EEG). We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. Although both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings reinforce the domain-general benefits of musicianship but reveal that successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity, which first emerge at a cortical level.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Habla , Percepción del Habla/fisiología , Corteza Auditiva/fisiología , Aprendizaje , Electroencefalografía , Plasticidad Neuronal/fisiología , Estimulación Acústica
6.
iScience ; 26(12): 108457, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058304

RESUMEN

Perception of bistable stimuli is influenced by prior context. In some cases, the interpretation matches with how the preceding stimulus was perceived; in others, it tends to be the opposite of the previous stimulus percept. We measured high-density electroencephalography (EEG) while participants were presented with a sequence of vowels that varied in formant transition, promoting the perception of one or two auditory streams followed by an ambiguous bistable sequence. For the bistable sequence, participants were more likely to report hearing the opposite percept of the one heard immediately before. This auditory contrast effect coincided with changes in alpha power localized in the left angular gyrus and left sensorimotor and right sensorimotor/supramarginal areas. The latter correlated with participants' perception. These results suggest that the contrast effect for a bistable sequence of vowels may be related to neural adaptation in posterior auditory areas, which influences participants' perceptual construal level of ambiguous stimuli.

7.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106017

RESUMEN

We investigated how neural oscillations code the hierarchical nature of stress rhythms in speech and how stress processing varies with language experience. By measuring phase synchrony of multilevel EEG-acoustic tracking and intra-brain cross-frequency coupling, we show the encoding of stress involves different neural signatures (delta rhythms = stress foot rate; theta rhythms = syllable rate), is stronger for amplitude vs. duration stress cues, and induces nested delta-theta coherence mirroring the stress-syllable hierarchy in speech. Only native English, but not Mandarin, speakers exhibited enhanced neural entrainment at central stress (2 Hz) and syllable (4 Hz) rates intrinsic to natural English. English individuals with superior cortical-stress tracking capabilities also displayed stronger neural hierarchical coherence, highlighting a nuanced interplay between internal nesting of brain rhythms and external entrainment rooted in language-specific speech rhythms. Our cross-language findings reveal brain-speech synchronization is not purely a "bottom-up" but benefits from "top-down" processing from listeners' language-specific experience.

8.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961204

RESUMEN

The "cocktail party problem" challenges our ability to understand speech in noisy environments, which often include background music. Here, we explored the role of background music in speech-in-noise listening. Participants listened to an audiobook in familiar and unfamiliar music while tracking keywords in either speech or song lyrics. We used EEG to measure neural tracking of the audiobook. When speech was masked by music, the modeled peak latency at 50 ms (P1TRF) was prolonged compared to unmasked. Additionally, P1TRF amplitude was larger in unfamiliar background music, suggesting improved speech tracking. We observed prolonged latencies at 100 ms (N1TRF) when speech was not the attended stimulus, though only in less musical listeners. Our results suggest early neural representations of speech are enhanced with both attention and concurrent unfamiliar music, indicating familiar music is more distracting. One's ability to perceptually filter "musical noise" at the cocktail party depends on objective musical abilities.

9.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808665

RESUMEN

Plasticity from auditory experiences shapes brain encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ∼45 minute training sessions recorded simultaneously with high-density EEG. We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. While both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings confirm domain-general benefits for musicianship but reveal successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity that first emerge at a cortical level.

10.
Cereb Cortex ; 33(18): 10076-10086, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522248

RESUMEN

So-called duplex speech stimuli with perceptually ambiguous spectral cues to one ear and isolated low- versus high-frequency third formant "chirp" to the opposite ear yield a coherent percept supporting their phonetic categorization. Critically, such dichotic sounds are only perceived categorically upon binaural integration. Here, we used frequency-following responses (FFRs), scalp-recorded potentials reflecting phase-locked subcortical activity, to investigate brainstem responses to fused speech percepts and to determine whether FFRs reflect binaurally integrated category-level representations. We recorded FFRs to diotic and dichotic stop-consonants (/da/, /ga/) that either did or did not require binaural fusion to properly label along with perceptually ambiguous sounds without clear phonetic identity. Behaviorally, listeners showed clear categorization of dichotic speech tokens confirming they were heard with a fused, phonetic percept. Neurally, we found FFRs were stronger for categorically perceived speech relative to category-ambiguous tokens but also differentiated phonetic categories for both diotically and dichotically presented speech sounds. Correlations between neural and behavioral data further showed FFR latency predicted the degree to which listeners labeled tokens as "da" versus "ga." The presence of binaurally integrated, category-level information in FFRs suggests human brainstem processing reflects a surprisingly abstract level of the speech code typically circumscribed to much later cortical processing.


Asunto(s)
Percepción del Habla , Habla , Humanos , Percepción del Habla/fisiología , Tronco Encefálico/fisiología , Encéfalo/fisiología , Audición , Percepción Auditiva/fisiología , Estimulación Acústica
11.
Neurobiol Lang (Camb) ; 4(2): 344-360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229510

RESUMEN

Considerable work suggests the dominant syllable rhythm of the acoustic envelope is remarkably similar across languages (∼4-5 Hz) and that oscillatory brain activity tracks these quasiperiodic rhythms to facilitate speech processing. However, whether this fundamental periodicity represents a common organizing principle in both auditory and motor systems involved in speech has not been explicitly tested. To evaluate relations between entrainment in the perceptual and production domains, we measured individuals' (i) neuroacoustic tracking of the EEG to speech trains and their (ii) simultaneous and non-simultaneous productions synchronized to syllable rates between 2.5 and 8.5 Hz. Productions made without concurrent auditory presentation isolated motor speech functions more purely. We show that neural synchronization flexibly adapts to the heard stimuli in a rate-dependent manner, but that phase locking is boosted near ∼4.5 Hz, the purported dominant rate of speech. Cued speech productions (recruit sensorimotor interaction) were optimal between 2.5 and 4.5 Hz, suggesting a low-frequency constraint on motor output and/or sensorimotor integration. In contrast, "pure" motor productions (without concurrent sound cues) were most precisely generated at rates of 4.5 and 5.5 Hz, paralleling the neuroacoustic data. Correlations further revealed strong links between receptive (EEG) and production synchronization abilities; individuals with stronger auditory-perceptual entrainment better matched speech rhythms motorically. Together, our findings support an intimate link between exogenous and endogenous rhythmic processing that is optimized at 4-5 Hz in both auditory and motor systems. Parallels across modalities could result from dynamics of the speech motor system coupled with experience-dependent tuning of the perceptual system via the sensorimotor interface.

12.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214801

RESUMEN

So-called duplex speech stimuli with perceptually ambiguous spectral cues to one ear and isolated low- vs. high-frequency third formant "chirp" to the opposite ear yield a coherent percept supporting their phonetic categorization. Critically, such dichotic sounds are only perceived categorically upon binaural integration. Here, we used frequency-following responses (FFRs), scalp-recorded potentials reflecting phase-locked subcortical activity, to investigate brainstem responses to fused speech percepts and to determine whether FFRs reflect binaurally integrated category-level representations. We recorded FFRs to diotic and dichotic stop-consonants (/da/, /ga/) that either did or did not require binaural fusion to properly label along with perceptually ambiguous sounds without clear phonetic identity. Behaviorally, listeners showed clear categorization of dichotic speech tokens confirming they were heard with a fused, phonetic percept. Neurally, we found FFRs were stronger for categorically perceived speech relative to category-ambiguous tokens but also differentiated phonetic categories for both diotically and dichotically presented speech sounds. Correlations between neural and behavioral data further showed FFR latency predicted the degree to which listeners labeled tokens as "da" vs. "ga". The presence of binaurally integrated, category-level information in FFRs suggests human brainstem processing reflects a surprisingly abstract level of the speech code typically circumscribed to much later cortical processing.

13.
Front Neurosci ; 17: 1032369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937676

RESUMEN

Introduction: Spoken language comprehension requires listeners map continuous features of the speech signal to discrete category labels. Categories are however malleable to surrounding context and stimulus precedence; listeners' percept can dynamically shift depending on the sequencing of adjacent stimuli resulting in a warping of the heard phonetic category. Here, we investigated whether such perceptual warping-which amplify categorical hearing-might alter speech processing in noise-degraded listening scenarios. Methods: We measured continuous dynamics in perception and category judgments of an acoustic-phonetic vowel gradient via mouse tracking. Tokens were presented in serial vs. random orders to induce more/less perceptual warping while listeners categorized continua in clean and noise conditions. Results: Listeners' responses were faster and their mouse trajectories closer to the ultimate behavioral selection (marked visually on the screen) in serial vs. random order, suggesting increased perceptual attraction to category exemplars. Interestingly, order effects emerged earlier and persisted later in the trial time course when categorizing speech in noise. Discussion: These data describe interactions between perceptual warping in categorization and speech-in-noise perception: warping strengthens the behavioral attraction to relevant speech categories, making listeners more decisive (though not necessarily more accurate) in their decisions of both clean and noise-degraded speech.

14.
Front Neurosci ; 17: 1075368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816123

RESUMEN

Introduction: Real time modulation of brainstem frequency-following responses (FFRs) by online changes in cortical arousal state via the corticofugal (top-down) pathway has been demonstrated previously in young adults and is more prominent in the presence of background noise. FFRs during high cortical arousal states also have a stronger relationship with speech perception. Aging is associated with increased auditory brain responses, which might reflect degraded inhibitory processing within the peripheral and ascending pathways, or changes in attentional control regulation via descending auditory pathways. Here, we tested the hypothesis that online corticofugal interplay is impacted by age-related hearing loss. Methods: We measured EEG in older adults with normal-hearing (NH) and mild to moderate hearing-loss (HL) while they performed speech identification tasks in different noise backgrounds. We measured α power to index online cortical arousal states during task engagement. Subsequently, we split brainstem speech-FFRs, on a trial-by-trial basis, according to fluctuations in concomitant cortical α power into low or high α FFRs to index cortical-brainstem modulation. Results: We found cortical α power was smaller in the HL than the NH group. In NH listeners, α-FFRs modulation for clear speech (i.e., without noise) also resembled that previously observed in younger adults for speech in noise. Cortical-brainstem modulation was further diminished in HL older adults in the clear condition and by noise in NH older adults. Machine learning classification showed low α FFR frequency spectra yielded higher accuracy for classifying listeners' perceptual performance in both NH and HL participants. Moreover, low α FFRs decreased with increased hearing thresholds at 0.5-2 kHz for clear speech but noise generally reduced low α FFRs in the HL group. Discussion: Collectively, our study reveals cortical arousal state actively shapes brainstem speech representations and provides a potential new mechanism for older listeners' difficulties perceiving speech in cocktail party-like listening situations in the form of a miss-coordination between cortical and subcortical levels of auditory processing.

15.
Neuroimage ; 269: 119899, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720437

RESUMEN

The brain transforms continuous acoustic events into discrete category representations to downsample the speech signal for our perceptual-cognitive systems. Such phonetic categories are highly malleable, and their percepts can change depending on surrounding stimulus context. Previous work suggests these acoustic-phonetic mapping and perceptual warping of speech emerge in the brain no earlier than auditory cortex. Here, we examined whether these auditory-category phenomena inherent to speech perception occur even earlier in the human brain, at the level of auditory brainstem. We recorded speech-evoked frequency following responses (FFRs) during a task designed to induce more/less warping of listeners' perceptual categories depending on stimulus presentation order of a speech continuum (random, forward, backward directions). We used a novel clustered stimulus paradigm to rapidly record the high trial counts needed for FFRs concurrent with active behavioral tasks. We found serial stimulus order caused perceptual shifts (hysteresis) near listeners' category boundary confirming identical speech tokens are perceived differentially depending on stimulus context. Critically, we further show neural FFRs during active (but not passive) listening are enhanced for prototypical vs. category-ambiguous tokens and are biased in the direction of listeners' phonetic label even for acoustically-identical speech stimuli. These findings were not observed in the stimulus acoustics nor model FFR responses generated via a computational model of cochlear and auditory nerve transduction, confirming a central origin to the effects. Our data reveal FFRs carry category-level information and suggest top-down processing actively shapes the neural encoding and categorization of speech at subcortical levels. These findings suggest the acoustic-phonetic mapping and perceptual warping in speech perception occur surprisingly early along the auditory neuroaxis, which might aid understanding by reducing ambiguity inherent to the speech signal.


Asunto(s)
Percepción del Habla , Habla , Humanos , Encéfalo/fisiología , Tronco Encefálico/fisiología , Percepción Auditiva/fisiología , Percepción del Habla/fisiología , Estimulación Acústica
16.
Int J Audiol ; 62(10): 920-926, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35822427

RESUMEN

OBJECTIVE: We investigated auditory temporal processing in children with amblyaudia (AMB), a subtype of auditory processing disorder (APD), via cortical neural entrainment. DESIGN AND STUDY SAMPLES: Evoked responses were recorded to click-trains at slow vs. fast (8.5 vs. 14.9/s) rates in n = 14 children with AMB and n = 11 age-matched controls. Source and time-frequency analyses (TFA) decomposed EEGs into oscillations (reflecting neural entrainment) stemming from bilateral auditory cortex. RESULTS: Phase-locking strength in AMB depended critically on the speed of auditory stimuli. In contrast to age-matched peers, AMB responses were largely insensitive to rate manipulations. This rate resistance occurred regardless of the ear of presentation and in both cortical hemispheres. CONCLUSIONS: Children with AMB show less rate-related changes in auditory cortical entrainment. In addition to reduced capacity to integrate information between the ears, we identify more rigid tagging of external auditory stimuli. Our neurophysiological findings may account for domain-general temporal processing deficits commonly observed in AMB and related APDs behaviourally. More broadly, our findings may inform communication strategies and future rehabilitation programmes; increasing the rate of stimuli above a normal (slow) speech rate is likely to make stimulus processing more challenging for individuals with AMB/APD.


Asunto(s)
Corteza Auditiva , Trastornos de la Percepción Auditiva , Percepción del Habla , Humanos , Niño , Corteza Auditiva/fisiología , Estimulación Acústica , Percepción Auditiva/fisiología , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Percepción del Habla/fisiología
17.
JASA Express Lett ; 2(10): 102001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36319209

RESUMEN

Objective assays of human cochlear synaptopathy (CS) have been challenging to develop. It is suspected that relative summating potential (SP) changes are different in listeners with CS. In this proof-of-concept study, young, normal-hearing adults were recruited and assigned to a low/high-risk group for having CS based on their extended audiograms (9-16 kHz). SPs to paired-clicks with varying inter-click intervals isolated non-refractory receptor components of cochlear activity. Abrupt increases in SPs to paired- vs single-clicks were observed in high-risk listeners. Critically, exaggerated SPs predicted speech-in-noise and subjective hearing abilities, suggesting relative SP changes to rapid clicks might help identify putative synaptopathic listeners.


Asunto(s)
Percepción del Habla , Habla , Adulto , Humanos , Potenciales Microfónicos de la Cóclea , Audición , Percepción Auditiva
18.
Psychomusicology ; 32(1-2): 1-6, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246453

RESUMEN

"Cocktail party" speech perception is largely studied using either linguistic or nonspeech noise maskers. Few studies have addressed how listeners understand speech during concurrent music. We used popular songs to probe the effects of familiarity and different inherent properties of background music (i.e., isolated vocals, isolated instruments, or unprocessed song) on speech recognition. Participants performed an open-set sentence recognition task in the presence of familiar and unfamiliar music maskers (-5 dB signal-to-noise ratio [SNR]) composed of the full unprocessed song, only the instrumentals, or only the vocals. We found that full songs negatively affected recognition performance more so than isolated vocals and instrumentals. Surprisingly, there was also an interaction with music familiarity; well-known music impaired performance in the homologous full song and instrumental conditions. Our results show strong effects of song component and familiarity on speech recognition ability, highlighting interactions between both physical and psychological characteristics of musical noise on task performance. Familiarity impairs speech perception when background music features the instrumentals with or without the vocals. Our findings have implications for understanding the possible facilitation (or interference) of background music during concurrent linguistic tasks including academic study in attempts to promote learning.

19.
Brain Sci ; 12(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36291234

RESUMEN

Music training was shown to induce changes in auditory processing in older adults. However, most findings stem from correlational studies and fewer examine long-term sustainable benefits. Moreover, research shows small and variable changes in auditory event-related potential (ERP) amplitudes and/or latencies in older adults. Conventional time domain analysis methods, however, are susceptible to latency jitter in evoked responses and may miss important information of brain processing. Here, we used time-frequency analyses to examine training-related changes in auditory-evoked oscillatory activity in healthy older adults (N = 50) assigned to a music training (n = 16), visual art training (n = 17), or a no-treatment control (n = 17) group. All three groups were presented with oddball auditory paradigms with synthesized piano tones or vowels during the acquisition of high-density EEG. Neurophysiological measures were collected at three-time points: pre-training, post-training, and at a three-month follow-up. Training programs were administered for 12-weeks. Increased theta power was found pre and post- training for the music (p = 0.010) and visual art group (p = 0.010) as compared to controls (p = 0.776) and maintained at the three-month follow-up. Results showed training-related plasticity on auditory processing in aging adults. Neuroplastic changes were maintained three months post-training, suggesting music and visual art programs yield lasting benefits that might facilitate encoding, retention, and memory retrieval.

20.
Brain Sci ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36291252

RESUMEN

The "cocktail party" problem-how a listener perceives speech in noisy environments-is typically studied using speech (multi-talker babble) or noise maskers. However, realistic cocktail party scenarios often include background music (e.g., coffee shops, concerts). Studies investigating music's effects on concurrent speech perception have predominantly used highly controlled synthetic music or shaped noise, which do not reflect naturalistic listening environments. Behaviorally, familiar background music and songs with vocals/lyrics inhibit concurrent speech recognition. Here, we investigated the neural bases of these effects. While recording multichannel EEG, participants listened to an audiobook while popular songs (or silence) played in the background at a 0 dB signal-to-noise ratio. Songs were either familiar or unfamiliar to listeners and featured either vocals or isolated instrumentals from the original audio recordings. Comprehension questions probed task engagement. We used temporal response functions (TRFs) to isolate cortical tracking to the target speech envelope and analyzed neural responses around 100 ms (i.e., auditory N1 wave). We found that speech comprehension was, expectedly, impaired during background music compared to silence. Target speech tracking was further hindered by the presence of vocals. When masked by familiar music, response latencies to speech were less susceptible to informational masking, suggesting concurrent neural tracking of speech was easier during music known to the listener. These differential effects of music familiarity were further exacerbated in listeners with less musical ability. Our neuroimaging results and their dependence on listening skills are consistent with early attentional-gain mechanisms where familiar music is easier to tune out (listeners already know the song's expectancies) and thus can allocate fewer attentional resources to the background music to better monitor concurrent speech material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA