Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Hortic Res ; 11(5): uhae057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720932

RESUMEN

Pumpkin CmoNAC1 enhances salt tolerance in grafted cucumbers. However, the potential interactions with other proteins that may co-regulate salt tolerance alongside CmoNAC1 have yet to be explored. In this study, we identified pumpkin CmoDREB2A as a pivotal transcription factor that interacts synergistically with CmoNAC1 in the co-regulation of salt tolerance. Both transcription factors were observed to bind to each other's promoters, forming a positive regulatory loop of their transcription. Knockout of CmoDREB2A in the root resulted in reduced salt tolerance in grafted cucumbers, whereas overexpression demonstrated the opposite effect. Multiple assays in our study provided evidence of the protein interaction between CmoDREB2A and CmoNAC1. Exploiting this interaction, CmoDREB2A facilitated the binding of CmoNAC1 to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1, inducing H2O2 and ABA synthesis and increasing the K+/Na+ ratio in grafted cucumbers under salt stress. Additionally, CmoNAC1 also promoted the binding of CmoDREB2A to CmoHAK5;1/CmoHAK5;2 promoters, further contributing to the K+/Na+ homeostasis. In summary, these findings reveal a crucial mechanism of CmoNAC1 and CmoDREB2A forming a complex enhancing salt tolerance in grafted cucumbers.

3.
Plant Physiol Biochem ; 208: 108443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479079

RESUMEN

Drought is a major limiting factor for the growth and development of pumpkins. Plasma membrane intrinsic proteins (PIPs) are major water channels that play a crucial role in the regulation of cellular water status and solute trafficking during drought conditions. CmoPIP1-4 is a plasma membrane-localized protein that is significantly upregulated in roots and leaves under drought-stress conditions. In this study, the overexpression of CmoPIP1-4 enhances drought resistance in yeast. In contrast, CRISPR-mediated CmoPIP1-4 knockout in pumpkin roots increased drought sensitivity. This increased drought sensitivity of CmoPIP1-4 knockout plants is associated with a decline in the levels of hydrogen sulfide (H2S) and abscisic acid (ABA), accompanied by an increase in water loss caused by greater levels of transpiration and stomatal conductance. In addition, the sensitivity of CmoPIP1-4 CRISPR plants is further aggravated by reduced antioxidative enzyme activity, decreased proline and sugar contents, and extensive root damage. Furthermore, expression profiles of genes such as CmoHSP70s, CmoNCED3, CmoNCED4, and others involved in metabolic activities were markedly reduced in CmoPIP1-4 CRISPR plants. Moreover, we also discovered an interaction between the drought-responsive gene CmoDCD and CmoPIP1-4, indicating their potential role in activating H2S-mediated signaling in pumpkin, which could confer drought tolerance. The findings of our study collectively demonstrate CmoPIP1-4 plays a crucial role in the regulation of H2S-mediated signaling, influencing stomatal density and aperture in pumpkin plants, and thereby enhancing their drought tolerance.


Asunto(s)
Cucurbita , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Resistencia a la Sequía , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Agua/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol ; 195(2): 1069-1088, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38330431

RESUMEN

Powdery mildew (PM) is one of the most widespread and prevalent diseases that affects a wide range of crops. In cucumber (Cucumis sativus L.), previous forward genetic studies have identified MILDEW RESISTANCE LOCUS O 8 (CsMLO8) as necessary but alone insufficient for cucumber PM resistance (PMR) and suggested the involvement of other members of the CsMLO family. However, the function of other CsMLO family members in cucumber remains largely unknown. Here, we developed a highly efficient multiplex gene editing system in cucumber to generate a series of Csmlo mutants from all the 13 family members. Systematic analysis of these mutants revealed growth effects of these CsMLO family members on development and PMR. Importantly, we obtained the Csmlo1/8/11 triple mutant with complete resistance to PM. Transcriptome and proteome analysis of PM-resistant Csmlo mutants suggested that the kinesin-like calmodulin-binding protein (KCBP)-interacting Ca2+-binding protein (CsKIC), calmodulin-like protein 28 (CsCML28), and Ca2+-dependent protein kinase 11 (CsCPK11)-mediated calcium signaling pathway is involved in PMR. CsMLO8 interacted directly with CsKIC, and the simultaneous silencing of both genes resulted in a phenotype that resembled the silencing of CsKIC alone. Silencing CsCML28 and CsCPK11 increased susceptibility to PM, whereas overexpressing CsCPK11 through genetic transformation enhanced cucumber's PMR, demonstrating their positive regulatory roles in PMR. Given the importance of PMR for cucurbit crops, this research provides unprecedented insights into the function of the proteins encoded by the CsMLO gene family as well as the plant defense response to PM pathogen.


Asunto(s)
Cucumis sativus , Resistencia a la Enfermedad , Edición Génica , Enfermedades de las Plantas , Cucumis sativus/genética , Cucumis sativus/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Edición Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Mutación/genética , Regulación de la Expresión Génica de las Plantas
5.
Plant Physiol ; 194(2): 1075-1090, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37935624

RESUMEN

Tomato (Solanum lycopersicum) is a cold-sensitive crop but frequently experiences low-temperature stimuli. However, tomato responses to cold stress are still poorly understood. Our previous studies have shown that using wild tomato (Solanum habrochaites) as rootstock can significantly enhance the cold resistance of grafted seedlings, in which a high concentration of jasmonic acids (JAs) in scions exerts an important role, but the mechanism of JA accumulation remains unclear. Herein, we discovered that tomato SlWRKY50, a Group II WRKY transcription factor that is cold inducible, responds to cold stimuli and plays a key role in JA biosynthesis. SlWRKY50 directly bound to the promoter of tomato allene oxide synthase gene (SlAOS), and overexpressing SlWRKY50 improved tomato chilling resistance, which led to higher levels of Fv/Fm, antioxidative enzymes, SlAOS expression, and JA accumulation. SlWRKY50-silenced plants, however, exhibited an opposite trend. Moreover, diethyldithiocarbamate acid (a JA biosynthesis inhibitor) foliar treatment drastically reduced the cold tolerance of SlWRKY50-overexpression plants to wild-type levels. Importantly, SlMYC2, the key regulator of the JA signaling pathway, can control SlWRKY50 expression. Overall, our research indicates that SlWRKY50 promotes cold tolerance by controlling JA biosynthesis and that JA signaling mediates SlWRKY50 expression via transcriptional activation by SlMYC2. Thus, this contributes to the genetic knowledge necessary for developing cold-resistant tomato varieties.


Asunto(s)
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Solanum/fisiología , Ciclopentanos/metabolismo , Transducción de Señal/genética , Frío
6.
Hortic Res ; 10(9): uhad157, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719275

RESUMEN

The NAC transcription factor is a type of plant-specific transcription factor that can regulate plant salt tolerance, but the underlying mechanism is unclear in grafted vegetables. H2O2 and ABA in pumpkin rootstocks can be transported to cucumber scion leaves, promoting stomatal closure to improve salt tolerance of grafted cucumbers. Despite these observations, the regulatory mechanism is unknown. Here, our research revealed that CmoNAC1 is a key transcription factor that regulates H2O2 and ABA signaling in pumpkin roots under salt stress. The function of CmoNAC1 was analyzed using root transformation and RNA-seq, and we found that pumpkin CmoNAC1 promoted the production of H2O2 and ABA via CmoRBOHD1 and CmoNCED6, respectively, and regulated K+/Na+ homeostasis via CmoAKT1;2, CmoHKT1;1, and CmoSOS1 to improve salt tolerance of grafted cucumbers. Root knockout of CmoNAC1 resulted in a significant decrease in H2O2 (52.9% and 32.1%) and ABA (21.8% and 42.7%) content and K+/Na+ ratio (81.5% and 56.3%) in leaf and roots of grafted cucumber, respectively, while overexpression showed the opposite effect. The root transformation experiment showed that CmoNCED6 could improve salt tolerance of grafted cucumbers by regulating ABA production and K+/Na+ homeostasis under salt stress. Finally, we found that CmoNAC1 bound to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1 using yeast one-hybrid, luciferase, and electrophoretic mobility shift assays. In conclusion, pumpkin CmoNAC1 not only binds to the promoters of CmoRBOHD1 and CmoNCED6 to regulate the production of H2O2 and ABA signals in roots, but also binds to the promoters of CmoAKT1;2 and CmoHKT1;1 to increase the K+/Na+ ratio, thus improving salt tolerance of grafted cucumbers.

7.
Hortic Res ; 10(8): uhad123, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554344

RESUMEN

Melon (Cucumis melo L.) has a long history of cultivation worldwide. During cultivation, domestication, and selection breeding, the sugar content of mature melon fruits has been significantly increased. Compared with unsweet melon and wild melon, rapid sucrose accumulation can occur in the middle and late stages of sweet melon fruit development. The phloem unloading pathway during the evolution and development of melon fruit has not been identified and analyzed. In this study, the phloem unloading pathway and the function of related sugar transporters in cultivated and wild melon fruits were analyzed by CFDA [5(6)-carbofluorescein diacetate] and esculin tracing, cytological pathway observation, qRT-PCR, and gene function analysis, etc. Results show that the phloem unloading pathway of wild melon fruit is largely symplastic, whereas the phloem unloading pathway of cultivated melon fruit shifts from symplastic to apoplasmic during development. According to a fruit grafting experiment, the fruit sink accumulates sugars independently. Correlation analysis showed that the expression amounts of several sucrose transporter genes were positively correlated with the sucrose content of melon fruit. Furthermore, CmSWEET10 was proved to be a sucrose transporter located on the plasma membrane of the phloem and highly expressed in the premature stage of sweet melon fruits, which means it may be involved in phloem apoplast unloading and sucrose accumulation in sweet melon fruits. Finally, we summarize a functional model of related enzymes and sugar transporters involved in the apoplast unloading of sweet melon fruits during enlargement and sucrose accumulation.

8.
Front Plant Sci ; 14: 1166008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255568

RESUMEN

Fruit cracking decreases the total production and the commercial value of watermelon. The molecular mechanisms of fruit cracking are unknown. In this study, 164 recombinant inbred lines (RILs) of watermelon, derived from the crossing of the WQ1 (cracking-sensitive) and WQ2 (cracking-tolerant) lines, were sequenced using specific length amplified fragment sequencing (SLAF-seq). A high-density genetic linkage map was constructed with 3,335 markers spanning 1,322.74 cM, at an average 0.40 cM across whole-genome flanking markers. The cracking tolerance capacity (CTC), depth of fruit cracking (DFC), rind thickness (RT), and rind hardness (RH) were measured for quantitative trait locus (QTL) analysis. Of the four traits analyzed, one major QTL with high phenotypic variation (41.04%-61.37%) was detected at 76.613-76.919 cM on chromosome 2, which contained 104 annotated genes. Differential gene expression analysis with RNA sequencing (RNA-seq) data between the two parents identified 4,508 differentially expressed genes (DEGs). Comparison of the genes between the QTL region and the DEGs obtained eight coexisting genes. Quantitative real-time PCR (qRT-PCR) analysis revealed that these genes were significant differentially expressed between the two parents. These results provide new insights into the identification of QTLs or genes and marker-assisted breeding in watermelon.

9.
Plant J ; 114(6): 1353-1368, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942473

RESUMEN

Pumpkin is often used as a rootstock for other Cucurbitaceae crops due to its resistance to soil-borne diseases and abiotic stress. Pumpkin rootstocks use a sodium transporter (CmHKT1;1) to promote the transport of Na+ from the shoot to the root effectively and improve the salt tolerance of the scion. However, the molecular regulatory mechanisms that influence the activity of CmHKT1;1 during salt stress response remain unknown. In this study, CmCNIH1, a cornichon homolog, was identified as a potential cargo receptor for CmHKT1;1. Yeast two-hybrid, biomolecular fluorescence complementation and luciferase complementary assays demonstrated that CmCNIH1 and CmHKT1;1 could interact. CmCNIH1 was a key component of the cellular vesicle transport machinery located in the endoplasmic reticulum (ER), ER export site and Golgi apparatus. A CmCNIH1 knockout mutant was more sensitive to salt stress than the wild-type (WT). In addition, ion homeostasis was disrupted in cmcnih1 mutants, which had higher Na+ and lower K+ content in shoots and roots than the WT. Two-electrode voltage-clamp experiment displayed that CmCNIH1 could not influence the Na+ current that passed through the plasma membrane (PM) in CmHKT1;1-expressing Xenopus laevis oocytes. Data from co-localization assays indicated that intact CmCNIH1 protein could alter the subcellular localization of CmHKT1;1 in tobacco leaf, pumpkin root and yeast. In summary, CmCNIH1 may function as a cargo receptor that regulates the localization of CmHKT1;1 to the PM to improve salt tolerance in pumpkin.


Asunto(s)
Cucurbita , Cucurbita/metabolismo , Tolerancia a la Sal , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Hortic Res ; 10(2): uhac256, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778181

RESUMEN

Thioredoxins (TRXs) are ubiquitous oxidoreductases and present as a multigenic family. TRXs determine the thiol redox balance, which is crucial for plants in the response to cold stress. However, limited knowledge is available about the role of TRXs in watermelon (Citrullus lanatus), which is highly sensitive to chilling stress in agricultural practice. Here, we identified 18 genes encoding 14 typical and 4 atypical TRXs from the watermelon genome, and found that ClTRX h2 localized at the plasma membrane was largely induced by chilling. Virus-induced gene silencing of ClTRX h2 resulted in watermelon plants that were more sensitive to chilling stress. We further found that ClTRX h2 physically interacted with mitogen-activated protein kinase kinase 5 (ClMPKK5), which was confirmed to phosphorylate and activate ClMPK3 in vitro, and the activation of ClMPK3 by ClMPKK5 was blocked by a point mutation of the Cys-229 residue to Ser in ClMPKK5. Additionally, ClTRX h2 inhibited the chilling-induced activation of ClMPK3, suggesting that the ClMPKK5-ClMPK3 cascade is regulated in a redox-dependent manner. We showed that ClMPK3-silenced plants had increased tolerance to chilling, as well as enhanced transcript abundances of the C-repeat/DREB binding factor (ClCBF) and cold-responsive (ClCOR) genes. Taken together, our results indicate that redox status mediated by ClTRX h2 inhibits ClMPK3 phosphorylation through the interaction between ClTRX h2 and ClMPKK5, which subsequently regulates the CBF-COR signaling pathway when submitted to chilling stress. Hence, our results provide a link between thiol redox balance and MAPK cascade signaling, revealing a conceptual framework to understand how TRX regulates chilling stress tolerance in watermelon.

11.
Hortic Res ; 10(1): uhac227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643752

RESUMEN

Tomato (Solanum lycopersicum) is among the most important vegetables across the world, but cold stress usually affects its yield and quality. The wild tomato species Solanum habrochaites is commonly utilized as rootstock for enhancing resistance against abiotic stresses in cultivated tomato, especially cold resistance. However, the underlying molecular mechanism remains unclear. In this research, we confirmed that S. habrochaites rootstock can improve the cold tolerance of cultivated tomato scions, as revealed by growth, physiological, and biochemical indicators. Furthermore, transcriptome profiling indicated significant differences in the scion of homo- and heterografted seedlings, including substantial changes in jasmonic acid (JA) biosynthesis and signaling, which were validated by RT-qPCR analysis. S. habrochaites plants had a high basal level of jasmonate, and cold stress caused a greater amount of active JA-isoleucine in S. habrochaites heterografts. Moreover, exogenous JA enhanced while JA inhibitor decreased the cold tolerance of tomato grafts. The JA biosynthesis-defective mutant spr8 also showed increased sensitivity to cold stress. All of these results demonstrated the significance of JA in the cold tolerance of grafted tomato seedlings with S. habrochaites rootstock, suggesting a future direction for the characterization of the natural variation involved in S. habrochaites rootstock-mediated cold tolerance.

12.
Plant Sci ; 326: 111509, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36283579

RESUMEN

Grafting can improve the salt tolerance of many crops. However, critical genes in scions responsive to rootstock under salt stress remain a mystery. We found that pumpkin rootstock decreased the content of Na+ by 70.24 %, increased the content of K+ by 25.9 %, and increased the K+/Na+ ratio by 366.0 % in cucumber scion leaves. RNA-seq analysis showed that ion transport-related genes were the key genes involved in salt stress tolerance in grafted cucumber. The identification and analysis of the expression of K+ transporter proteins in cucumber and pumpkin revealed six and five HAK5 members, respectively. The expression of CsHAK5;3 in cucumber was elevated in different graft combinations under salt stress and most notably in cucumber scion/pumpkin rootstock. CsHAK5;3 was localized to the plasma membrane, and a yeast complementation assay revealed that it can transport K+. CsHAK5;3 knockout in hairy root mutants decreased the K+ content of leaves (45.6 %) and roots (50.3 %), increased the Na+ content of leaves (29.3 %) and roots (34.8 %), and decreased the K+/Na+ ratio of the leaves (57.9 %) and roots (62.9 %) in cucumber. However, CsHAK5;3 overexpression in hairy roots increased the K+ content of the leaves (31.2 %) and roots (38.3 %), decreased the Na+ content of leaves (17.2 %) and roots (14.3 %), and increased the K+/Na+ ratio of leaves (58.9 %) and roots (61.6 %) in cucumber. In conclusion, CsHAK5;3 in cucumber can mediate K+ transport and is one of the key target pumpkin genes that enhance salt tolerance of cucumber grafted.


Asunto(s)
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucumis sativus/metabolismo , Tolerancia a la Sal/genética , Raíces de Plantas/metabolismo , Cucurbita/genética , Perfilación de la Expresión Génica , Sodio/metabolismo
13.
Food Chem ; 401: 134072, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108381

RESUMEN

Plant growth regulator N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) is widely used in fruit production. However, the mechanism in which CPPU affects melon fruit quality, especially aroma compound, remains unclear. Here, gas chromatography-mass spectrometry was performed to detect the sugar, citric acid, and aroma content in CPPU-treated and pollinated melon fruit. Results showed that the application of CPPU decreased the sugar and aroma content in melon fruit. The relative content of several important esters, including isobutyl acetate, ethyl acetate, 2-methylbutyl acetate, methyl acetate, benzyl acetate, and phenethyl acetate, in CPPU-treated fruits was significantly lower than that in honeybee-pollinated fruits. The content of many amino acids (isoleucine, leucine, valine, methionine, and l-phenylalanine), which could be metabolized into aroma compounds, in CPPU-treated fruits was significantly higher than that in honeybee-pollinated fruits. In conclusion, CPPU application interferes with amino-acid metabolism and affects the production of aromatic esters in melon fruit.


Asunto(s)
Cucurbitaceae , Compuestos Orgánicos Volátiles , Abejas , Animales , Frutas/metabolismo , Cucurbitaceae/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Azúcares/metabolismo , Isoleucina , Leucina/metabolismo , Metionina/metabolismo , Ácido Cítrico/metabolismo , Valina/metabolismo , Fenilalanina/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Odorantes
14.
Plants (Basel) ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501381

RESUMEN

In this paper, a novel point cloud segmentation and completion framework is proposed to achieve high-quality leaf area measurement of melon seedlings. In particular, the input of our algorithm is the point cloud data collected by an Azure Kinect camera from the top view of the seedlings, and our method can enhance measurement accuracy from two aspects based on the acquired data. On the one hand, we propose a neighborhood space-constrained method to effectively filter out the hover points and outlier noise of the point cloud, which can enhance the quality of the point cloud data significantly. On the other hand, by leveraging the purely linear mixer mechanism, a new network named MIX-Net is developed to achieve segmentation and completion of the point cloud simultaneously. Different from previous methods that separate these two tasks, the proposed network can better balance these two tasks in a more definite and effective way, leading to satisfactory performance on these two tasks. The experimental results prove that our methods can outperform other competitors and provide more accurate measurement results. Specifically, for the seedling segmentation task, our method can obtain a 3.1% and 1.7% performance gain compared with PointNet++ and DGCNN, respectively. Meanwhile, the R2 of leaf area measurement improved from 0.87 to 0.93 and MSE decreased from 2.64 to 2.26 after leaf shading completion.

15.
Plant Physiol Biochem ; 192: 320-330, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302334

RESUMEN

Melon fruits are popular because of sweet taste and pleasant aroma. Grafting has been extensively used for melons to alleviate abiotic stresses and control soil borne diseases. However, use of grafting for vegetable fruit quality improvement is less studies. In modern age fruit quality particularly sensory quality characteristics have key importance from consumer eye lens. We performed liquid chromatography-mass spectrometry and metabonomic analysis to examine sensory fruit quality of melon grafted onto ten different pumpkin rootstocks. Bases on the result of our study, 478 metabolites were detected and 184 metabolites consisting of lipids, amino acids and organic oxygen compounds were differentially expressed in grafted melon fruits. The results from metabolomic, physiochemical and sensory analysis explain the differences in melon fruit flavor from two contrasting rootstocks. In conclusion the fruits from Tianzhen No. 1 rootstock exhibited better organoleptic characteristics and higher soluble sugars content [glucose (19.87 mg/g), fructose (19.68 mg/g) and sucrose (169.45 mg/g)] compared with other rootstocks used in this study. Moreover, the contents of bitterness causing amino acids such as L-arginine, L-asparagine, Histidinyl-histidine and Acetyl-DL-valine were found lower in Tianzhen No. 1-grafted melon fruits compared with Sizhuang No. 12-grafted melon fruits. These fruit quality characteristics made Tianzhen No. 1 rootstock suitable for commercial cultivation of Yuniang melon.

16.
Plants (Basel) ; 11(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35567145

RESUMEN

Rootstock grafting is an important method to improve the yield and quality of seedlings. Pumpkin is the rootstock of watermelon, melon, and cucumber, and the root phenotype of rootstock is an important reference for breeding. At present, the root phenotype is mainly measured by scanners, with which it is difficult to achieve non-destructive and in situ measurements. In this work, we propose a method for non-destructive measurement of the root phenotype on the surface layer of the root ball of pumpkin rootstock plug seedlings and an accurate estimation of the surface area, length, and volume of total root using an AZURE KINECT sensor. Firstly, the KINECT is used to capture four-view color and depth images of the root surface, and then multi-view images are spliced to obtain a complete image of the root surface. After preprocessing of the images, we extract the roots from the root ball. For root phenotype measurements, the surface areas of the surface roots and root ball are calculated, followed by calculating root encapsulation. Next, the non-overlapping roots in the surface root image are extracted, and the ratio of the surface area to the skeleton length is used as the average diameter of total root. Based on the high correlation between the surface area of surface root and the surface area of total root, a linear fitting model is established to estimate the surface area, length, and volume of total root. The experiment ultimately showed that the measurement error for the average diameter of total root is less than 30 µm, and consistency with the scanner is higher than 93.3%. The accuracy of the surface area of total root estimation was found to be more than 88.1%, and the accuracy of the root length of total root estimation was observed to be greater than 87.2%. The method proposed in this paper offers similar accuracy to a scanner, which meets the needs of non-destructive root phenotype research. This method is expected to replace root scanners for high-throughput phenotypic measurements and provides a new avenue for root phenotype measurements of pumpkin rootstocks. This technology will provide key basic data for evaluating the root growth of pumpkin rootstocks.

17.
Chemosphere ; 299: 134474, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35367497

RESUMEN

Salinity is a global issue limiting efficient agricultural production. Nano-enabled plant salt tolerance is a hot topic. However, the role of nanoparticles induced possible early stimulation on antioxidant system in its improved plant salt tolerance is still largely unknown. Here, poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles) (PNC, 7.8 nm, -31 mV) with potent ROS (reactive oxygen species) scavenging ability are used. Compared with control, no significant difference of H2O2 and O2•─ content, MDA (malondialdehyde) content, relative electric conductivity, and Fv/Fm was found in leaves and/or roots of cucumber before onset of salinity stress, regardless of leaf or root application of PNC. While, before onset of salinity stress, compared with control, the activities of SOD (superoxide dismutase, up to 1.8 folds change), POD (peroxidase, up to 2.5 folds change) and CAT (catalase, up to 2.3 folds change), and the content of GSH (glutathione, up to 3.0 folds change) and ASA (ascorbic acid, up to 2.4 folds change) in leaves and roots of cucumber with PNC leaf spray or root application were significantly increased. RNA seq analysis further confirmed that PNC foliar spray upregulates more genes in leaves over roots than the root application. These results showed that foliar sprayed PNC have stronger early stimulation effect on antioxidant system than the root applied one and leaf are more sensitive to PNC stimulation than root. After salt stress, cucumber plants with foliar sprayed PNC showed better improvement in salt tolerance than the root applied one. Also, plants with foliar sprayed PNC showed significant higher whole plant cerium content than the root applied one after salt stress. In summary, we showed that foliar spray of nanoceria is more optimal than root application in terms of improving cucumber salt tolerance, and this improvement is associated with better stimulation on antioxidant system in plants.


Asunto(s)
Cucumis sativus , Nanopartículas , Antioxidantes/farmacología , Glutatión/farmacología , Peróxido de Hidrógeno/farmacología , Hojas de la Planta , Tolerancia a la Sal
18.
J Exp Bot ; 73(8): 2275-2289, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35139196

RESUMEN

The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Transporte Biológico/fisiología , Carbohidratos , Frutas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Fitomejoramiento , Sacarosa/metabolismo , Azúcares/metabolismo
19.
Hortic Res ; 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35048110

RESUMEN

Cucurbit crops are suitable models for studying long-distance signaling in horticultural plants. Although thousands of substances are graft transmissible in cucurbits, functional studies have been hampered by the lack of efficient genetic transformation systems. Here, we report a convenient and efficient root transformation method for several cucurbit crops that will facilitate studies of functional genes and shoot-root crosstalk. We obtained healthy plants with completely transformed roots and non-transgenic shoots within 6 weeks. Furthermore, we combined this root transformation method with grafting, which allowed for gene manipulation in the rootstock. We validated our system by exploring salt tolerance mechanisms using a cucumber (Cucumis sativus)/pumpkin (Cucurbita moschata Duch.) (scion/rootstock) graft in which the sodium transporter gene High-affinity K+ transporter1 (CmoHKT1;1) was edited in the pumpkin rootstock, and by overexpressing the pumpkin tonoplast Na+/H+ antiporter gene Sodium hydrogen exchanger4 (CmoNHX4) in cucumber roots.

20.
Antioxidants (Basel) ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34943126

RESUMEN

Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio-temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA