Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS One ; 7(8): e43332, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912856

RESUMEN

Chemokines play a key role in leukocyte recruitment during inflammation and are implicated in the pathogenesis of a number of autoimmune diseases. As such, inhibiting chemokine signaling has been of keen interest for the development of therapeutic agents. This endeavor, however, has been hampered due to complexities in the chemokine system. Many chemokines have been shown to signal through multiple receptors and, conversely, most chemokine receptors bind to more than one chemokine. One approach to overcoming this complexity is to develop a single therapeutic agent that binds and inactivates multiple chemokines, similar to an immune evasion strategy utilized by a number of viruses. Here, we describe the development and characterization of a novel therapeutic antibody that targets a subset of human CC chemokines, specifically CCL3, CCL4, and CCL5, involved in chronic inflammatory diseases. Using a sequential immunization approach, followed by humanization and phage display affinity maturation, a therapeutic antibody was developed that displays high binding affinity towards the three targeted chemokines. In vitro, this antibody potently inhibits chemotaxis and chemokine-mediated signaling through CCR1 and CCR5, primary chemokine receptors for the targeted chemokines. Furthermore, we have demonstrated in vivo efficacy of the antibody in a SCID-hu mouse model of skin leukocyte migration, thus confirming its potential as a novel therapeutic chemokine antagonist. We anticipate that this antibody will have broad therapeutic utility in the treatment of a number of autoimmune diseases due to its ability to simultaneously neutralize multiple chemokines implicated in disease pathogenesis.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Quimiocinas CC/inmunología , Inmunomodulación/inmunología , Inmunoterapia/métodos , Transducción de Señal/inmunología , Animales , Anticuerpos Neutralizantes/uso terapéutico , Enfermedades Autoinmunes/inmunología , Quimiotaxis/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Fosforilación , Resonancia por Plasmón de Superficie
2.
J Biol Inorg Chem ; 14(1): 1-10, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18712420

RESUMEN

The catalytic and structural properties of the H67A and H349A dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. On the basis of sequence alignment with the carboxypeptidase from Pseudomonas sp. strain RS-16, both H67 and H349 were predicted to be Zn(II) ligands. The H67A DapE enzyme exhibited a decreased catalytic efficiency (180-fold) compared with wild-type (WT) DapE towards N-succinyldiaminopimelic acid. No catalytic activity was observed for H349A under the experimental conditions used. The electronic paramagnetic resonance (EPR) and electronic absorption data indicate that the Co(II) ion bound to H349A-DapE is analogous to that of WT DapE after the addition of a single Co(II) ion. The addition of 1 equiv of Co(II) to H67A DapE provides spectra that are very different from those of the first Co(II) binding site of the WT enzyme, but that are similar to those of the second binding site. The EPR and electronic absorption data, in conjunction with the kinetic data, are consistent with the assignment of H67 and H349 as active-site metal ligands for the DapE from H. influenzae. Furthermore, the data suggest that H67 is a ligand in the first metal binding site, while H349 resides in the second metal binding site. A three-dimensional homology structure of the DapE from H. influenzae was generated using the X-ray crystal structure of the DapE from Neisseria meningitidis as a template and superimposed on the structure of the aminopeptidase from Aeromonas proteolytica (AAP). This homology structure confirms the assignment of H67 and H349 as active-site ligands. The superimposition of the homology model of DapE with the dizinc(II) structure of AAP indicates that within 4.0 A of the Zn(II) binding sites of AAP all of the amino acid residues of DapE are nearly identical.


Asunto(s)
Amidohidrolasas/metabolismo , Haemophilus influenzae/enzimología , Histidina/metabolismo , Amidohidrolasas/química , Amidohidrolasas/genética , Secuencia de Aminoácidos , Dominio Catalítico , Cobalto/química , Cobalto/metabolismo , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/síntesis química , Ácido Diaminopimélico/química , Espectroscopía de Resonancia por Spin del Electrón , Histidina/química , Histidina/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Espectrofotometría Ultravioleta , Zinc/química , Zinc/metabolismo
3.
J Biol Inorg Chem ; 11(4): 398-408, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16596389

RESUMEN

The aminopeptidase from Aeromonas proteolytica (AAP) contains two zinc ions in the active site and catalyzes the degradation of peptides. Herein we report the crystal structures of AAP at 0.95-A resolution at neutral pH and at 1.24-A resolution at low pH. The combination of these structures allowed the precise modeling of atomic positions, the identification of the metal bridging oxygen species, and insight into the physical properties of the metal ions. On the basis of these structures, a new putative catalytic mechanism is proposed for AAP that is likely relevant to all binuclear metalloproteases.


Asunto(s)
Aeromonas/enzimología , Aminopeptidasas/química , Estructura Terciaria de Proteína , Aeromonas/metabolismo , Aminopeptidasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Modelos Químicos , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
4.
Biochemistry ; 43(30): 9620-8, 2004 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-15274616

RESUMEN

Binding of the competitive, slow-binding inhibitor bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-leucine) to the aminopeptidase from Aeromonas proteolytica (AAP) was examined by both spectroscopic and crystallographic methods. Electronic absorption spectra of the catalytically competent [Co_(AAP)], [CoCo(AAP)], and [ZnCo(AAP)] enzymes recorded in the presence of bestatin revealed that both of the divalent metal ions in AAP are involved in binding bestatin. The electron paramagnetic resonance (EPR) spectrum of the [CoCo(AAP)]-bestatin complex exhibited no observable perpendicular- or parallel-mode signal. These data indicate that the two Co(II) ions in AAP are antiferromagnetically coupled yielding an S = 0 ground state and suggest that a single oxygen atom bridges between the two divalent metal ions. The EPR data obtained for [CoZn(AAP)] and [ZnCo(AAP)] confirm that bestatin interacts with both metal ions. The X-ray crystal structure of the [ZnZn(AAP)]-bestatin complex was solved to 2.0 A resolution. Both side chains of bestatin occupy a well-defined hydrophobic pocket that is adjacent to the dinuclear Zn(II) active site. The amino acid residues ligated to the dizinc(II) cluster in AAP are identical to those in the native structure with only minor perturbations in bond length. The alkoxide oxygen of bestatin bridges between the two Zn(II) ions in the active site, displacing the bridging water molecule observed in the native [ZnZn(AAP)] structure. The M-M distances observed in the AAP-bestatin complex and native AAP are identical (3.5 A) with alkoxide oxygen atom distances of 2.1 and 1.9 A from Zn1 and Zn2, respectively. Interestingly, the backbone carbonyl oxygen atom of bestatin is coordinated to Znl at a distance of 2.3 A. In addition, the NH(2) group of bestatin, which mimics the N-terminal amine group of an incoming peptide, binds to Zn2 with a bond distance of 2.3 A. A combination of the spectroscopic and X-ray crystallographic data presented herein with the previously reported mechanistic data for AAP has provided additional insight into the substrate-binding step of peptide hydrolysis as well as insight into important small molecule features for inhibitor design.


Asunto(s)
Aeromonas/química , Aminopeptidasas/química , Proteínas Bacterianas/química , Leucina/análogos & derivados , Leucina/química , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Unión Competitiva , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Hidrólisis , Leucina/metabolismo , Unión Proteica , Espectrofotometría Atómica , Espectrofotometría Ultravioleta , Especificidad por Sustrato
5.
J Am Chem Soc ; 125(48): 14654-5, 2003 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-14640610

RESUMEN

The Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra, of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae have been recorded in the presence of one or two equivalents of Zn(II) (i.e. [Zn_(DapE)] and [ZnZn(DapE)]). The Fourier transforms of the Zn EXAFS are dominated by a peak at ca. 2.0 A, which can be fit for both [Zn_(DapE)] and [ZnZn(DapE)], assuming ca. 5 (N,O) scatterers at 1.96 and 1.98 A, respectively. A second-shell feature at ca. 3.34 A appears in the [ZnZn(DapE)] EXAFS spectrum but is significantly diminished in [Zn_(DapE)]. These data show that DapE contains a dinuclear Zn(II) active site. Since no X-ray crystallographic data are available for any DapE enzyme, these data provide the first glimpse at the active site of DapE enzymes. In addition, the EXAFS data for DapE incubated with two competitive inhibitors, 2-carboxyethylphosphonic acid and 5-mercaptopentanoic acid, are also presented.


Asunto(s)
Amidohidrolasas/química , Haemophilus influenzae/enzimología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Análisis de Fourier , Haemophilus influenzae/genética , Espectrometría por Rayos X/métodos
6.
Biochemistry ; 42(36): 10756-63, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12962500

RESUMEN

The catalytic and structural properties of divalent metal ion cofactor binding sites in the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. Co(II)-substituted DapE enzyme was 25% more active than the Zn(II)-loaded form of the enzyme. Interestingly, Mn(II) can activate DapE, but only to approximately 20% of the Zn(II)-loaded enzyme. The order of the observed k(cat) values are Co(II) > Zn(II) > Cd(II) > Mn(II) >Ni(II) approximately equal Cu(II) approximately equal Mg(II). DapE was shown to only hydrolyze L,L-N-succinyl-diaminopimelic acid (L,L-SDAP) and was inactive toward D,L-, L,D-, and D,D-SDAP. DapE was also inactive toward several acetylated amino acids as well as D,L-succinyl aminopimelate, which differs from the natural substrate, L,L-SDAP, by the absence of the amine group on the amino acid side chain. These data imply that the carboxylate of the succinyl moiety and the amine form important interactions with the active site of DapE. The affinity of DapE for one versus two Zn(II) ions differs by nearly 2.2 x 10(3) times (K(d1) = 0.14 microM vs K(d2) = 300 microM). In addition, an Arrhenius plot was constructed from k(cat) values measured between 16 and 35 degrees C and was linear over this temperature range. The activation energy for [ZnZn(DapE)] was found to be 31 kJ/mol with the remaining thermodynamic parameters calculated at 25 degrees C being DeltaG(++) = 64 kJ/mol, DeltaH(++) = 28.5 kJ/mol, and DeltaS(++) = -119 J mol(-1) K(-1). Electronic absorption and EPR spectra of [Co_(DapE)] and [CoCo(DapE)] indicate that the first Co(II) binding site is five-coordinate, while the second site is octahedral. In addition, any spin-spin interaction between the two Co(II) ions in [CoCo(DapE)] is very weak. The kinetic and spectroscopic data presented herein suggest that the DapE from H. influenzae has similar divalent metal binding properties to the aminopeptidase from Aeromonas proteolytica (AAP), and the observed divalent metal ion binding properties are discussed with respect to their catalytic roles in SDAP hydrolysis.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Proteínas Bacterianas , Haemophilus influenzae/enzimología , Metales Pesados/metabolismo , Acetilación , Aminoácidos/química , Aminoácidos/metabolismo , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Sitios de Unión , Cationes Bivalentes/metabolismo , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Magnesio/química , Magnesio/metabolismo , Metales Pesados/química , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Termodinámica , gamma-Glutamil Hidrolasa/química , gamma-Glutamil Hidrolasa/metabolismo
7.
Structure ; 10(8): 1063-72, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12176384

RESUMEN

The aminopeptidase from Aeromonas proteolytica (AAP) is a bridged bimetallic enzyme that removes the N-terminal amino acid from a peptide chain. To fully understand the metal roles in the reaction pathway of AAP we have solved the 1.20 A resolution crystal structure of native AAP (PDB ID = 1LOK). The high-quality electron density maps showed a single Tris molecule chelated to the active site Zn(2+), alternate side chain conformations for some side chains, a sodium ion that mediates a crystal contact, a surface thiocyanate ion, and several potential hydrogen atoms. In addition, the high precision of the atomic positions has led to insight into the protonation states of some of the active site amino acid side chains.


Asunto(s)
Aeromonas/enzimología , Aminopeptidasas/química , Proteínas Bacterianas , Trometamina/química , Aminoácidos/química , Aminoácidos/metabolismo , Aminopeptidasas/metabolismo , Sitios de Unión , Quelantes/química , Quelantes/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Unión Proteica , Trometamina/metabolismo , Zinc/metabolismo
8.
Biochemistry ; 41(11): 3712-9, 2002 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-11888288

RESUMEN

A series of L-leucine aniline analogues were synthesized that contained either a carbonyl or thiocarbonyl as a part of the amide bond. Additionally, the para-position on the phenyl ring of several substrates was altered with various electron-withdrawing or donating groups. The kinetic constants K(m) and k(cat) were determined for the hydrolysis of each of these compounds in the presence of the aminopeptidase from Aeromonas proteolytica (AAP) containing either Zn(II) or Cd(II). The dizinc(II) form of AAP ([ZnZn(AAP)]) was able to cleave both carbonyl and thiocarbonyl containing peptide substrates with similar efficiency. However, the dicadmium(II) form of AAP ([CdCd(AAP)]) was unable to cleave any of the carbonyl-containing compounds tested but was able to cleave the thionopeptide substrates. This is consistent with the borderline hard/soft nature of Zn(II) vs Cd(II). The trends observed in the K(m) values suggest that the oxygen atom of the amide bond directly interacts with the dinuclear active site of AAP. Heterodimetallic forms of AAP that contained one atom of Zn(II) and one of Cd(II) (i.e., [CdZn(AAP)] and [ZnCd(AAP)]) were also prepared. The K(m) values for the thionopeptides substrates are the smallest when Cd(II) is in the first metal binding site, suggesting that substrate binds to the first metal binding site. 1-Phenyl-2-thiourea (PTU) and urea (PU) were also examined to determine the differences between thionopeptide and peptide binding to AAP. PTU and PU were found to be competitive inhibitors of AAP with inhibition constants of 0.24 and 4.6 mM, respectively. The electronic absorption and EPR spectra of [CoCo(AAP)], [CoZn(AAP)], and [ZnCo(AAP)] were recorded in the absence and presence of both PU and PTU. Spectral changes were observed for PTU binding to [CoCo(AAP)] and [CoZn(AAP)] but not for [ZnCo(AAP)], while no spectral changes were observed for any of the Co(II)-substituted forms of AAP upon the addition of PU. These data indicate that carbonyl binding occurs only at the first metal binding site. In light of the data presented herein, the substrate binding step in the proposed mechanism of AAP catalyzed peptide hydrolysis can be further refined.


Asunto(s)
Aeromonas/enzimología , Aminopeptidasas/metabolismo , Péptidos/metabolismo , Aminopeptidasas/química , Aminopeptidasas/aislamiento & purificación , Cobalto/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrólisis , Cinética , Especificidad por Sustrato
9.
J Biol Inorg Chem ; 7(1-2): 129-35, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11862549

RESUMEN

The aminopeptidase from Aeromonas proteolytica (AAP) can catalyze the hydrolysis of L-leucine ethyl ester ( L-Leu-OEt) with a rate of 96 +/- 5 s-1 and a Km of 700 microM. The observed turnover number for L-Leu-OEt hydrolysis by AAP is similar to that observed for peptide hydrolysis, which is 67 +/- 5 s-1. The k(cat) values for the hydrolysis of L-Leu-OEt and L-leucine- p-nitroanilide ( L- pNA) catalyzed by AAP were determined at different pH values under saturating substrate concentrations. Construction of an Arrhenius plot from the temperature dependence of AAP-catalyzed ester hydrolysis indicates that the rate-limiting step does not change as a function of temperature and is product formation. The activation energy ( Ea) for the activated ES ester complex is 13.7 kJ mol-1, while the enthalpy and entropy of activation at 25 degrees C calculated over the temperature range 298-338 K are 11.2 kJ mol-1 and -175 J K-1 mol-1, respectively. The free energy of activation at 25 degrees C was found to be 63.4 kJ mol-1. The enthalpy of ionization was also measured and was found to be very similar for both peptide and ester substrates, yielding values of 20 kJ mol-1 for L-Leu-OEt and 25 kJ mol-1 for L- pNA. For peptide and L-amino acid ester cleavage reactions catalyzed by AAP, and 6.07, respectively. Proton inventory data suggest that two protons are transferred in the rate-limiting step of ester hydrolysis while only one is transferred in peptide hydrolysis. The combination of these data with the available X-ray crystallographic, kinetic, spectroscopic, and thermodynamic data for AAP provides new insight into the catalytic mechanism of AAP.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Bacterianas , Esterasas/metabolismo , Ésteres/metabolismo , Histidina/metabolismo , Zinc/metabolismo , Aminopeptidasas/química , Estabilidad de Enzimas/fisiología , Esterasas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA