Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6414, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138156

RESUMEN

Deployment of ultracold atom interferometers (AI) into space will capitalize on quantum advantages and the extended freefall of persistent microgravity to provide high-precision measurement capabilities for gravitational, Earth, and planetary sciences, and to enable searches for subtle forces signifying physics beyond General Relativity and the Standard Model. NASA's Cold Atom Lab (CAL) operates onboard the International Space Station as a multi-user facility for fundamental studies of ultracold atoms and to mature space-based quantum technologies. We report on pathfinding experiments utilizing ultracold 87Rb atoms in the CAL AI. A three-pulse Mach-Zehnder interferometer was studied to understand the influence of ISS vibrations. Additionally, Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time. Finally, the CAL AI was used to remotely measure the Bragg laser photon recoil as a demonstration of the first quantum sensor using matter-wave interferometry in space.

2.
Nature ; 623(7987): 502-508, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968524

RESUMEN

The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space1,2. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases3. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10-12 level4. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from 87Rb and 41K), observation of interspecies interactions, as well as the production of 39K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (87Rb and 41K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.

3.
Nat Commun ; 13(1): 7889, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550117

RESUMEN

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

4.
Nat Commun ; 12(1): 1847, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758199

RESUMEN

The origin of macroscopic irreversibility from microscopically time-reversible dynamical laws-often called the arrow-of-time problem-is of fundamental interest in both science and philosophy. Experimentally probing such questions in quantum theory requires systems with near-perfect isolation from the environment and long coherence times. Ultracold atoms are uniquely suited to this task. We experimentally demonstrate a striking parallel between the statistical irreversibility of wavefunction collapse and the arrow of time problem in the weak measurement of the quantum spin of an atomic cloud. Our experiments include statistically rare events where the arrow of time is inferred backward; nevertheless we provide evidence for absolute irreversibility and a strictly positive average arrow of time for the measurement process, captured by a fluctuation theorem. We further demonstrate absolute irreversibility for measurements performed on a quantum many-body entangled wavefunction-a unique opportunity afforded by our platform-with implications for studying quantum many-body dynamics and quantum thermodynamics.

5.
Opt Lett ; 39(14): 4271-3, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121704

RESUMEN

We demonstrate a waveplate for a pseudo-spin-1/2 Bose-Einstein condensate (BEC) using a two-photon Raman interaction. The angle of the waveplate is set by the relative phase of the optical fields, and the retardance is controlled by the pulse area. The waveplate allows us to image maps of the Stokes parameters of a BEC and thereby measure its relative ground-state phase. We demonstrate the waveplate by measuring the Stokes parameters of a coreless vortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA