RESUMEN
Climate change is exacerbating forest disturbances through more frequent and more intense droughts and fires, undermining their ability to recover from such disturbances. The response of fast-growing early-successional species to drought is poorly understood, despite their key role in ecological succession and their ability to enhance ecosystem resilience. Here, we compared the growth responses to drought events of three early-successional species (silver birch, black poplar, and Scots pine) with that of one late-successional species (European beech) across their natural distribution ranges in Europe. We used tree-ring widths of 6340 trees from 109 forest sites to establish species-specific tree-ring chronologies. We then used multiple linear regression to analyze which climatic or growth variables (pre-drought growth and growth during drought) best explained the tree responses to drought. Silver birch, Scots pine, and black poplar showed superior drought tolerance, with a slight, non-significant growth reduction under drought, whereas European beech showed a significant decrease in growth. The variables that influenced growth during and after the drought were species-specific. Annual precipitation and growth variables were key predictors of post-drought growth for Scots pine, black poplar, and European beech. Scots pine and silver birch grew better with increasing latitude, i.e., in Northern Europe than in Central Europe, while European beech and black poplar showed more growth at sites with high precipitation during the vegetation and dormant period, respectively. This study provides insights into the drought tolerance of early-successional species and highlights their ability to promote ecological succession and facilitate the transition to drought-resistant, late-successional forest ecosystems.
RESUMEN
Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.
Asunto(s)
Quercus , Árboles , Quercus/fisiología , Sequías , Clima , Estaciones del Año , Bosques , Cambio ClimáticoRESUMEN
The timing of leaf senescence in deciduous trees influences carbon uptake and the resources available for tree growth, defense, and reproduction. Therefore, simulated biosphere-atmosphere interactions and, eventually, estimates of the biospheric climate change mitigation potential are affected by the accuracy of process-oriented leaf senescence models. However, current leaf senescence models are likely to suffer from a bias towards the mean (BTM). This may lead to overly flat trends, whereby errors would increase with increasing difference from the average timing of leaf senescence, ultimately distorting model performance and projected future shifts. However, such effects of the BTM on model performance and future shifts have rarely been investigated. We analyzed >17 × 106 past dates and >49 × 106 future shifts of leaf senescence simulated by 21 process-oriented models that had been calibrated with >45,000 observations from Central Europe for three major European tree species. The surmised effects on model performance and future shifts occurred in all 21 models, revealing strong model-specific BTM. In general, the models performed only slightly better than a null model that just simulates the average timing of leaf senescence. While standard comparisons of model performance favored models with stronger BTM, future shifts of leaf senescence were smaller when projected by models with weaker BTM. Overall, the future shifts for 2090-2099 relative to 1990-1999 increased by an average of 13-14 days after correcting for the BTM. In conclusion, the BTM substantially affects simulations by state-of-the-art leaf senescence models, which compromises model comparisons and distorts projections of future shifts. Smaller shifts result from flatter trends associated with stronger BTM. Therefore, smaller shifts according to models with weaker BTM illustrate the considerable uncertainty in current leaf senescence projections. It is likely that state-of-the-art projections of future biosphere behavior under global change are distorted by erroneous leaf senescence models.
Asunto(s)
Hojas de la Planta , Senescencia de la Planta , Temperatura , Estaciones del Año , Árboles , Cambio ClimáticoRESUMEN
Leaf phenology is key for regulating total growing-season mass and energy fluxes. Long-term temporal trends towards earlier leaf unfolding are observed across Northern Hemisphere forests. Phenological dates also vary between years, whereby end-of-season (EOS) dates correlate positively with start-of-season (SOS) dates and negatively with growing-season total net CO2 assimilation (Anet). These associations have been interpreted as the effect of a constrained leaf longevity or of premature carbon (C) sink saturation-with far-reaching consequences for long-term phenology projections under climate change and rising CO2. Here, we use multidecadal ground and remote-sensing observations to show that the relationships between Anet and EOS are opposite at the interannual and the decadal time scales. A decadal trend towards later EOS persists in parallel with a trend towards increasing Anet-in spite of the negative Anet-EOS relationship at the interannual scale. This finding is robust against the use of diverse observations and models. Results indicate that acclimation of phenology has enabled plants to transcend a constrained leaf longevity or premature C sink saturation over the course of several decades, leading to a more effective use of available light and a sustained extension of the vegetation CO2 uptake season over time.
Asunto(s)
Dióxido de Carbono , Bosques , Plantas , Hojas de la Planta , AclimataciónRESUMEN
Tree regeneration is a key process for long-term forest dynamics, determining changes in species composition and shaping successional trajectories. While tree regeneration is a highly stochastic process, tree regeneration studies often cover narrow environmental gradients only, focusing on specific forest types or species in distinct regions. Thus, the larger-scale effects of temperature, water availability, and stand structure on tree regeneration are poorly understood.We investigated these effects in respect of tree recruitment (in-growth) along wide environmental gradients using forest inventory data from Flanders (Belgium), northwestern Germany, and Switzerland covering more than 40 tree species. We employed generalized linear mixed models to capture the abundance of tree recruitment in response to basal area, stem density, shade casting ability of a forest stand as well as site-specific degree-day sum (temperature), water balance, and plant-available water holding capacity. We grouped tree species to facilitate comparisons between species with different levels of tolerance to shade and drought.Basal area and shade casting ability of the overstory had generally a negative impact on tree recruitment, but the effects differed between levels of shade tolerance of tree recruitment in all study regions. Recruitment rates of very shade-tolerant species were positively affected by shade casting ability. Stem density and summer warmth (degree-day sum) had similar effects on all tree species and successional strategies. Water-related variables revealed a high degree of uncertainty and did not allow for general conclusions. All variables had similar effects independent of the varying diameter thresholds for tree recruitment in the different data sets.Synthesis: Shade tolerance and stand structure are the main drivers of tree recruitment along wide environmental gradients in temperate forests. Higher temperature generally increases tree recruitment rates, but the role of water relations and drought tolerance remains uncertain for tree recruitment on cross-regional scales.
RESUMEN
Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.
Asunto(s)
Quercus , Cambio Climático , Sequías , Ecosistema , Europa (Continente) , Bosques , ÁrbolesRESUMEN
Warmer climate and more frequent extreme droughts will pose major threats to forest ecosystems. Past demography processes due to post-glacial recolonization and adaptation to local environmental conditions are among the main contributors to genetic differentiation processes among provenances. Assessing the intra-specific variability of tree growth responses to such changes is crucial to explore a species' potential to cope with climate warming. We combined growth-related traits derived from tree-ring width series with neutral genetic information of 18 European provenances of silver fir (Abies alba Mill.) growing in two common garden experiments in Switzerland. Analyses based on neutral single nucleotide polymorphisms revealed that the studied provenances grouped into three longitudinal clusters. These three genetic clusters showed differences in growth traits (height and DBH), with the provenances from the eastern cluster exhibiting the highest growth. The Pyrenees cluster showed significantly lower recovery and resilience to the extreme drought of 2003 as well as lower values of growth autocorrelation. QST-FST and correlation analyses with climate of provenance origin suggest that the differences among provenances found in some traits result from natural selection. Our study suggests that the last post-glacial re-colonization and natural selection are the major drivers explaining the intra-specific variability in growth of silver fir across Europe. These findings highlight the importance of combining dendroecology and genetic analyses on fitness-related traits to assess the potential of a species to cope with global environmental change and provide insights to support assisted gene flow to ensure the persistence of the species in European forests.
Asunto(s)
Cambio Climático , Ecosistema , Sequías , Europa (Continente) , Selección Genética , SuizaRESUMEN
Worldwide increases in droughts- and heat-waves-associated tree mortality events are destabilizing the future of many forests and the ecosystem services they provide. Along with climate, understanding the impact of the legacies of past forest management is key to better explain current responses of different tree species to climate change. We studied tree mortality events that peaked in 2012 affecting one native (silver fir; growing within its natural distribution range) and two introduced (black pine and Scots; growing outside their natural distribution range) conifer species from the Romanian Carpathians. The three conifers were compared in terms of mortality events, growth trends, growth resilience to severe drought events, climate-growth relationships, and regeneration patterns. The mortality rates of the three species were found to be associated with severe drought events. Nevertheless, the native silver fir seems to undergo a self-thinning process, while the future of the remaining living black pine and Scots pine trees is uncertain as they register significant negative growth trends. Overall, the native silver fir showed a higher resilience to severe drought events than the two introduced pine species. Furthermore, and unlike the native silver fir, black pine and Scots pine species do not successfully regenerate. A high diversity of native broadleaf species sprouts and develops instead under them suggesting that we might be witnessing a process of ecological succession, with broadleaves recovering their habitats. As native species seem to perform better in terms of resilience and regeneration than introduced species, the overall effect of the black pine and Scots pine mortality might be compensated. Legacies of past forest management should be taken into account in order to better understand current responses of different tree species to ongoing climate change.
Asunto(s)
Sequías , Tracheophyta , Ecosistema , Bosques , Rumanía , ÁrbolesRESUMEN
Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.
Asunto(s)
Sequías/mortalidad , Bosques , Biodiversidad , Cambio Climático/mortalidad , Ecosistema , Especificidad de la Especie , Árboles/fisiologíaRESUMEN
Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
Asunto(s)
Sequías , Árboles/crecimiento & desarrollo , Adaptación Fisiológica , Cambio Climático , Cycadopsida/crecimiento & desarrollo , Ecología , Bosques , Magnoliopsida/crecimiento & desarrollo , Mortalidad , Suelo/química , Especificidad de la Especie , Estrés Fisiológico , Análisis de Supervivencia , Árboles/clasificación , AguaRESUMEN
Global warming is expected to result in earlier emergence of tree seedlings that may experience higher damages and mortality due to late frost in spring. We monitored emergence, characteristics, and survival of seedlings across ten tree species in temperate mixed deciduous forests of Central Europe over one and a half year. We tested whether the timing of emergence represents a trade-off for seedling survival between minimizing frost risk and maximizing the length of the growing period. Almost two-thirds of the seedlings died during the first growing period. The timing of emergence was decisive for seedling survival. Although seedlings that emerged early faced a severe late frost event, they benefited from a longer growing period resulting in increased overall survival. Larger seedling height and higher number of leaves positively influenced survival. Seedlings growing on moss had higher survival compared to mineral soil, litter, or herbaceous vegetation. Synthesis. Our findings demonstrate the importance of emergence time for survival of tree seedlings, with early-emerging seedlings more likely surviving the first growing period.
RESUMEN
Extreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree-ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930-2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts-these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs.
Asunto(s)
Sequías , Fagus , Cambio Climático , Ecosistema , Bosques , ÁrbolesRESUMEN
The timing of leaf unfolding in temperate woody species is predominantly controlled by the seasonal course of temperature in late winter and early spring. However, quantifying lagged temperature effects on spring phenology is still challenging. Here, we aimed at investigating lagged and potentially non-linear effects of daily maximum temperatures on the probability of leaf unfolding in temperate woody species growing across large elevational gradients. We analyzed 5280 observations of leaf-out time of four tree species (European beech, horse chestnut, European larch, Norway spruce) and one shrub species (common hazel) that were recorded by volunteers over 40 years at 42 locations in Switzerland. We used a case-crossover sampling design to match leaf-out dates with control dates (i.e., dates before or after leaf-out), and analyzed these data with conditional logistic regression accounting for lagged temperature effects over 60 days. Multivariate meta-analyses were used to synthesize lagged temperature and elevational effects on leaf unfolding across multiple phenological stations. Temperature effects on the probability of leaf unfolding were largest at relatively short lags (i.e., within ca. 10 days) and decreased with increasing lags. Short- to mid-term effects (i.e., within ca. 10 to 20 days) were larger for late-leafing species known to be photoperiod-sensitive (beech, Norway spruce). Temperature effects increased for the broadleaved species (horse chestnut, hazel, beech) with decreasing elevation, particularly within ca. 10 to 40 days, i.e., leaf unfolding occurs more rapidly at low elevations for a given daily maximum temperature. Our novel findings provide evidence of cumulative and long-term temperature effects on leaf unfolding, whereby the efficiency of relatively high temperatures to trigger leaf-out becomes higher shortly before bud burst. These lagged associations between temperature and leaf unfolding improve our understanding of phenological responses across temperate woody species with differing ecological requirements that occur along elevational gradients.
RESUMEN
Elevated CO2 along with rising temperature and water deficits can lead to changes in tree physiology and leaf biochemistry. These changes can increase heat- and drought-induced tree mortality. We aim to reveal the impacts of climatic drivers on individual compounds at the leaf level among European larch (Larix decidua) and mountain pine (Pinus mugo) trees, which are widely distributed at high elevations. We investigated seasonal carbon isotope composition (δ13C) and concentration patterns of carbohydrates and organic acids in needles of these two different species from a case study in the Swiss National Park (SNP). We found that average and minimum air temperatures were the main climatic drivers of seasonal variation of δ13C in sucrose and glucose as well as in concentrations of carbohydrates and citric acid/citrate in needles of both tree species. The impact of seasonal climatic drivers on larch and mountain pine trees at the needle level is in line with our earlier study in this region for long-term changes at the tree-ring level. We conclude that the species-specific changes in δ13C and concentrations of carbohydrates and organic acids are sensitive indicators of changes in the metabolic pathways occurring as a result of climatic changes.
Asunto(s)
Isótopos de Carbono/análisis , Pinus/metabolismo , Cambio Climático , Parques Recreativos , Árboles/metabolismoRESUMEN
Climate warming has advanced leaf unfolding of trees and shrubs, thus extending the growing period but potentially exposing plants to increased frost risk. The relative shifts in the timing of leaf unfolding vs. the timing and intensity of frost events determine whether frost risk changes under climate warming. Here we test whether the frost risk for unfolding leaves of 13 European tree and shrub species has changed over more than 60 years using dynamic state-space models and phenological observations from 264 sites located between 200 and 1900 m a.s.l. across Switzerland. Trees and shrubs currently feature sufficient safety margins regarding frost risk, which increase from early- to late-leafing species and tend to decrease with increasing elevation. Particularly after 1970 to 1990 and at higher elevations, leaf unfolding has advanced across all species. While the time between the last critical frost and leaf unfolding has shifted from predominantly positive trends in the late 1950s and 1960s to a trend reversal since the 2000s, the minimum temperature during leaf unfolding has mostly increased since the 1980s. These dynamic shifts in leaf unfolding and frost risk demonstrate species- and site-specific responses of trees and shrubs to climate cooling and warming.
Asunto(s)
Cambio Climático , Frío , Hojas de la Planta/anatomía & histología , Árboles/anatomía & histología , Europa (Continente) , Riesgo , Especificidad de la EspecieRESUMEN
Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last â¼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.
RESUMEN
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species (Larix decidua, Picea abies, Pinus cembra, and Pinus mugo) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall (L. decidua) and current year's spring (L. decidua, P. abies). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies, P. cembra, and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.
RESUMEN
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.
Asunto(s)
Escarabajos , Sequías , Árboles/crecimiento & desarrollo , Animales , Carbono , Estrés FisiológicoRESUMEN
Tree mortality is a key process shaping forest dynamics. Thus, there is a growing need for indicators of the likelihood of tree death. During the last decades, an increasing number of tree-ring based studies have aimed to derive growth-mortality functions, mostly using logistic models. The results of these studies, however, are difficult to compare and synthesize due to the diversity of approaches used for the sampling strategy (number and characteristics of alive and death observations), the type of explanatory growth variables included (level, trend, etc.), and the length of the time window (number of years preceding the alive/death observation) that maximized the discrimination ability of each growth variable. We assess the implications of key methodological decisions when developing tree-ring based growth-mortality relationships using logistic mixed-effects regression models. As examples, we use published tree-ring datasets from Abies alba (13 different sites), Nothofagus dombeyi (one site), and Quercus petraea (one site). Our approach is based on a constant sampling size and aims at (1) assessing the dependency of growth-mortality relationships on the statistical sampling scheme used, (2) determining the type of explanatory growth variables that should be considered, and (3) identifying the best length of the time window used to calculate them. The performance of tree-ring-based mortality models was reasonably high for all three species (area under the receiving operator characteristics curve, AUC > 0.7). Growth level variables were the most important predictors of mortality probability for two species (A. alba, N. dombeyi), while growth-trend variables need to be considered for Q. petraea. In addition, the length of the time window used to calculate each growth variable was highly uncertain and depended on the sampling scheme, as some growth-mortality relationships varied with tree age. The present study accounts for the main sampling-related biases to determine reliable species-specific growth-mortality relationships. Our results highlight the importance of using a sampling strategy that is consistent with the research question. Moving towards a common methodology for developing reliable growth-mortality relationships is an important step towards improving our understanding of tree mortality across species and its representation in dynamic vegetation models.
Asunto(s)
Modelos Biológicos , Árboles/fisiología , Modelos Logísticos , Análisis Multivariante , Tamaño de la MuestraRESUMEN
We aim to achieve a mechanistic understanding of the eco-physiological processes in Larix decidua and Pinus mugo var. uncinata growing on north- and south-facing aspects in the Swiss National Park in order to distinguish the short- and long-term effects of a changing climate. To strengthen the interpretation of the δ(18)O signal in tree rings and its coherence with the main factors and processes driving evaporative δ(18)O needle water enrichment, we analyzed the δ(18)O in needle, xylem and soil water over the growing season in 2013 and applied the mechanistic Craig-Gordon model (1965) for the short-term responses. We found that δ(18)O needle water strongly reflected the variability of relative humidity mainly for larch, while only δ(18)O in pine xylem water showed a strong link to δ(18)O in precipitation. Larger differences in offsets between modeled and measured δ(18)O needle water for both species from the south-facing aspects were detected, which could be explained by the high transpiration rates. Different soil water and needle water responses for the two species indicate different water-use strategies, further modulated by the site conditions. To reveal the long-term physiological response of the studied trees to recent and past climate changes, we analyzed δ(13)C and δ(18)O in wood chronologies from 1900 to 2013. Summer temperatures as well as summer and annual amount of precipitations are important factors for growth of both studied species from both aspects. However, mountain pine trees reduced sensitivity to temperature changes, while precipitation changes come to play an important role for the period from 1980 to 2013. Intrinsic water-use efficiency (WUEi) calculated for larch trees since the 1990s reached a saturation point at elevated CO2 Divergent trends between pine WUEi and δ(18)O are most likely indicative of a decline of mountain pine trees and are also reflected in decoupling mechanisms in the isotope signals between needles and tree-rings.