Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Neurosci ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802592

RESUMEN

As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.

2.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352415

RESUMEN

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.

3.
Cell Rep ; 43(1): 113635, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38160393

RESUMEN

Spinal neural circuits that execute movement are composed of cardinal classes of neurons that emerged from distinct progenitor lineages. Each cardinal class contains multiple neuronal subtypes characterized by distinct molecular, anatomical, and physiological characteristics. Through a focus on the excitatory V3 interneuron class, here we demonstrate that interneuron subtype diversity is delineated through a combination of neurogenesis timing and final laminar settling position. We have revealed that early-born and late-born embryonic V3 temporal classes further diversify into subclasses with spatially and molecularly discrete identities. While neurogenesis timing accounts for V3 morphological diversification, laminar settling position accounts for electrophysiological profiles distinguishing V3 subtypes within the same temporal classes. Furthermore, V3 interneuron subtypes display independent behavioral recruitment patterns demonstrating a functional modularity underlying V3 interneuron diversity. These studies provide a framework for how early embryonic temporal and spatial mechanisms combine to delineate spinal interneuron classes into molecularly, anatomically, and functionally relevant subtypes in adults.


Asunto(s)
Interneuronas , Médula Espinal , Interneuronas/fisiología , Movimiento , Neurogénesis/fisiología
4.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076820

RESUMEN

Spinal cord interneurons play a crucial role in shaping motor output, but their precise identity and circuit connectivity remain unclear. Focusing on the cardinal class of inhibitory V1 interneurons, we define the diversity of four major V1 subsets according to timing of neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Birthdating delineates two early-born (Renshaw and Pou6f2) and two late-born V1 clades (Foxp2 and Sp8) suggesting sequential neurogenesis gives rise to different V1 clades. Neurogenesis did not correlate with motoneuron targeting. Early-born Renshaw cells and late-born Foxp2-V1 interneurons both tightly coupled to motoneurons, while early-born Pou6f2-V1 and late-born Sp8-V1 interneurons did not. V1-clades also greatly differ in cell numbers and diversity. Lineage labeling of the Foxp2-V1 clade shows it contains over half of all V1 interneurons and provides the largest inhibitory input to motoneuron cell bodies. Foxp2-V1 subgroups differ in neurogenesis and proprioceptive input. Notably, one subgroup defined by Otp expression and located adjacent to the lateral motor column exhibits substantial input from proprioceptors, consistent with some Foxp2-V1 cells at this location forming part of reciprocal inhibitory pathways. This was confirmed with viral tracing methods for ankle flexors and extensors. The results validate the previous V1 clade classification as representing unique interneuron subtypes that differ in circuit placement with Foxp2-V1s forming the more complex subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for the ontogenetic and phylogenetic origins of their diversity. SIGNIFICANCE STATEMENT: Spinal interneuron diversity and circuit organization represents a key challenge to understand the neural control of movement in normal adults and also during motor development and in disease. Inhibitory interneurons are a core element of these spinal circuits, acting on motoneurons either directly or via premotor networks. V1 interneurons comprise the largest group of inhibitory interneurons in the ventral horn and their organization remains unclear. Here we present a comprehensive examination of V1 subtypes according to neurogenesis, placement in spinal motor circuits and motoneuron synaptic targeting. V1 diversity increases during evolution from axial-swimming fishes to limb-based mammalian terrestrial locomotion and this is reflected in the size and heterogeneity of the Foxp2-V1 clade which is closely associated to limb motor pools. We show Foxp2-V1 interneurons establish the densest and more direct inhibitory synaptic input to motoneurons, especially on cell bodies. This is of further importance because deficits on motoneuron cell body inhibitory V1 synapses and on Foxp2-V1 interneurons themselves have recently been shown to be affected at early stages of pathology in motor neurodegenerative diseases like amyotrophic lateral sclerosis.

5.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798174

RESUMEN

As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.

6.
Sci Rep ; 11(1): 19861, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615947

RESUMEN

Renshaw cells (RCs) are one of the most studied spinal interneurons; however, their roles in motor control remain enigmatic in part due to the lack of experimental models to interfere with RC function, specifically in adults. To overcome this limitation, we leveraged the distinct temporal regulation of Calbindin (Calb1) expression in RCs to create genetic models for timed RC manipulation. We used a Calb1 allele expressing a destabilized Cre (dgCre) theoretically active only upon trimethoprim (TMP) administration. TMP timing and dose influenced RC targeting efficiency, which was highest within the first three postnatal weeks, but specificity was low with many other spinal neurons also targeted. In addition, dgCre showed TMP-independent activity resulting in spontaneous recombination events that accumulated with age. Combining Calb1-dgCre with Parvalbumin (Pvalb) or Engrailed1 (En1) Flpo alleles in dual conditional systems increased cellular and timing specificity. Under optimal conditions, Calb1-dgCre/Pvalb-Flpo mice targeted 90% of RCs and few dorsal horn neurons; Calb1-dgCre/En1-Flpo mice showed higher specificity, but only a maximum of 70% of RCs targeted. Both models targeted neurons throughout the brain. Restricted spinal expression was obtained by injecting intraspinally AAVs carrying dual conditional genes. These results describe the first models to genetically target RCs bypassing development.


Asunto(s)
Alelos , Calbindina 1/metabolismo , Proteínas de Homeodominio/metabolismo , Integrasas/genética , Parvalbúminas/metabolismo , Células de Renshaw/metabolismo , Animales , Biomarcadores , Técnica del Anticuerpo Fluorescente , Marcación de Gen , Inmunohistoquímica , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Unión Proteica
7.
Neuroscience ; 450: 81-95, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858144

RESUMEN

Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Interneuronas , Ratones , Ratones Transgénicos , Neuronas Motoras , Médula Espinal , Superóxido Dismutasa/genética
8.
Neuron ; 100(1): 135-149.e7, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308166

RESUMEN

Neuronal diversification is a fundamental step in the construction of functional neural circuits, but how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here we developed an embryonic stem cell (ESC)-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades collectively containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that Renshaw cells are intrinsically programmed to migrate to species-specific laminae upon transplantation and to form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly.


Asunto(s)
Interneuronas/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Sinapsis/metabolismo , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Interneuronas/metabolismo , Ratones , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo
9.
Neuron ; 97(2): 341-355.e3, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29307712

RESUMEN

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.


Asunto(s)
Genes Homeobox , Médula Espinal/citología , Animales , Teorema de Bayes , Miembro Anterior/embriología , Miembro Anterior/inervación , Perfilación de la Expresión Génica , Miembro Posterior/embriología , Miembro Posterior/inervación , Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Región Lumbosacra , Ratones , Ratones Noqueados , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Médula Espinal/embriología , Tórax , Factores de Transcripción/fisiología
10.
J Neurosci ; 37(45): 10835-10841, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118212

RESUMEN

Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.


Asunto(s)
Interneuronas/fisiología , Locomoción/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Animales , Humanos , Neuronas Motoras/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Médula Espinal/diagnóstico por imagen , Médula Espinal/crecimiento & desarrollo
11.
Cell ; 165(1): 207-219, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26949184

RESUMEN

Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. Here, we show that V1 interneurons, a major inhibitory population that controls motor output, fractionate into highly diverse subsets on the basis of the expression of 19 transcription factors. Transcriptionally defined V1 subsets exhibit distinct physiological signatures and highly structured spatial distributions with mediolateral and dorsoventral positional biases. These positional distinctions constrain patterns of input from sensory and motor neurons and, as such, suggest that interneuron position is a determinant of microcircuit organization. Moreover, V1 diversity indicates that different inhibitory microcircuits exist for motor pools controlling hip, ankle, and foot muscles, revealing a variable circuit architecture for interneurons that control limb movement.


Asunto(s)
Extremidades/fisiología , Movimiento , Células de Renshaw/química , Células de Renshaw/citología , Médula Espinal/citología , Factores de Transcripción/análisis , Animales , Ratones , Propiocepción , Células de Renshaw/clasificación , Células de Renshaw/fisiología , Transcriptoma
12.
Cell ; 165(1): 220-233, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26949187

RESUMEN

Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.


Asunto(s)
Teorema de Bayes , Células de Renshaw/química , Células de Renshaw/citología , Médula Espinal/citología , Factores de Transcripción/análisis , Animales , Ratones , Células de Renshaw/clasificación , Transcriptoma
13.
Proc Natl Acad Sci U S A ; 109(11): 4044-51, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22343533

RESUMEN

Wnts make up a large family of extracellular signaling molecules that play crucial roles in development and disease. A subset of noncanonical Wnts signal independently of the transcription factor ß-catenin by a mechanism that regulates key morphogenetic movements during embryogenesis. The best characterized noncanonical Wnt, Wnt5a, has been suggested to signal via a variety of different receptors, including the Ror family of receptor tyrosine kinases, the Ryk receptor tyrosine kinase, and the Frizzled seven-transmembrane receptors. Whether one or several of these receptors mediates the effects of Wnt5a in vivo is not known. Through loss-of-function experiments in mice, we provide conclusive evidence that Ror receptors mediate Wnt5a-dependent processes in vivo and identify Dishevelled phosphorylation as a physiological target of Wnt5a-Ror signaling. The absence of Ror signaling leads to defects that mirror phenotypes observed in Wnt5a null mutant mice, including decreased branching of sympathetic neuron axons and major defects in aspects of embryonic development that are dependent upon morphogenetic movements, such as severe truncation of the caudal axis, the limbs, and facial structures. These findings suggest that Wnt5a-Ror-Dishevelled signaling constitutes a core noncanonical Wnt pathway that is conserved through evolution and is crucial during embryonic development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Desarrollo Embrionario , Morfogénesis , Fosfoproteínas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Axones/metabolismo , Proteínas Dishevelled , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis/genética , Fosforilación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Sistema Nervioso Simpático/crecimiento & desarrollo , Proteínas Wnt/deficiencia , Proteína Wnt-5a
14.
Cell ; 143(3): 442-55, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21029865

RESUMEN

The mechanisms that promote excitatory synapse formation and maturation have been extensively studied. However, the molecular events that limit excitatory synapse development so that synapses form at the right time and place and in the correct numbers are less well understood. We have identified a RhoA guanine nucleotide exchange factor, Ephexin5, which negatively regulates excitatory synapse development until EphrinB binding to the EphB receptor tyrosine kinase triggers Ephexin5 phosphorylation, ubiquitination, and degradation. The degradation of Ephexin5 promotes EphB-dependent excitatory synapse development and is mediated by Ube3A, a ubiquitin ligase that is mutated in the human cognitive disorder Angelman syndrome and duplicated in some forms of Autism Spectrum Disorders (ASDs). These findings suggest that aberrant EphB/Ephexin5 signaling during the development of synapses may contribute to the abnormal cognitive function that occurs in Angelman syndrome and, possibly, ASDs.


Asunto(s)
Sinapsis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Síndrome de Angelman/metabolismo , Animales , Niño , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Embrión de Mamíferos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratas , Ratas Long-Evans , Receptores de la Familia Eph/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rhoA/genética
15.
Neuron ; 55(1): 53-68, 2007 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-17610817

RESUMEN

During development, neural precursors migrate in response to positional cues such as growth factor gradients. However, the mechanisms that enable precursors to sense and respond to such gradients are poorly understood. Here we show that cerebellar granule cell precursors (GCPs) migrate along a gradient of brain-derived neurotrophic factor (BDNF), and we demonstrate that vesicle trafficking is critical for this chemotactic process. Activation of TrkB, the BDNF receptor, stimulates GCPs to secrete BDNF, thereby amplifying the ambient gradient. The BDNF gradient stimulates endocytosis of TrkB and associated signaling molecules, causing asymmetric accumulation of signaling endosomes at the subcellular location where BDNF concentration is maximal. Thus, regulated BDNF exocytosis and TrkB endocytosis enable precursors to polarize and migrate in a directed fashion along a shallow BDNF gradient.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Cerebelo/citología , Quimiotaxis/efectos de los fármacos , Endosomas/fisiología , Transducción de Señal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Movimiento Celular/efectos de los fármacos , Cerebelo/efectos de los fármacos , Gránulos Citoplasmáticos/fisiología , Endocitosis/efectos de los fármacos , Lentivirus/genética , Ratones , Ratones Noqueados , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor trkB/metabolismo , Células Madre/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rhoA/metabolismo
16.
Proc Natl Acad Sci U S A ; 104(17): 7265-70, 2007 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-17440041

RESUMEN

Dendritic spines are small, actin-rich protrusions on the surface of dendrites that receive the majority of excitatory synaptic inputs in the brain. The formation and remodeling of spines, processes that underlie synaptic development and plasticity, are regulated in part by Eph receptor tyrosine kinases. However, the mechanism by which Ephs regulate actin cytoskeletal remodeling necessary for spine development is not fully understood. Here, we report that the Rac1 guanine nucleotide exchange factor Tiam1 interacts with the EphB2 receptor in a kinase-dependent manner. Activation of EphBs by their ephrinB ligands induces the tyrosine phosphorylation and recruitment of Tiam1 to EphB complexes containing NMDA-type glutamate receptors. Either knockdown of Tiam1 protein by RNAi or inhibition of Tiam1 function with a dominant-negative Tiam1 mutant blocks dendritic spine formation induced by ephrinB1 stimulation. Taken together, these findings suggest that EphBs regulate spine development in part by recruiting, phosphorylating, and activating Tiam1. Tiam1 can then promote Rac1-dependent actin cytoskeletal remodeling required for dendritic spine morphogenesis.


Asunto(s)
Espinas Dendríticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de la Familia Eph/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Efrina-B1/farmacología , Expresión Génica/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Proteínas de Neoplasias/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfotirosina/metabolismo , Estructura Terciaria de Proteína/efectos de los fármacos , Interferencia de ARN , Ratas , Ratas Long-Evans , Receptores de la Familia Eph/química , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T
17.
Nat Neurosci ; 10(1): 67-76, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17143272

RESUMEN

The development of dendritic spines is thought to be crucial for synaptic plasticity. Dendritic spines are retracted upon Eph receptor A4 (EphA4) activation, but the mechanisms that control this process are not well understood. Here we report an important function of cyclin-dependent kinase 5 (Cdk5) in EphA4-dependent spine retraction in mice. We found that blocking Cdk5 activity inhibits ephrin-A1-triggered spine retraction and reduction of mEPSC frequency at hippocampal synapses. The activation of EphA4 resulted in the recruitment of Cdk5 to EphA4, leading to the tyrosine phosphorylation and activation of Cdk5. EphA4 and Cdk5 then enhanced the activation of ephexin1, a guanine-nucleotide exchange factor that regulates activation of the small Rho GTPase RhoA. The association between EphA4 and ephexin1 was significantly reduced in Cdk5(-/-) brains and Cdk5-dependent phosphorylation of ephexin1 was required for the ephrin-A1-mediated regulation of spine density. These findings suggest that ephrin-A1 promotes EphA4-dependent spine retraction through the activation of Cdk5 and ephexin1, which in turn modulates actin cytoskeletal dynamics.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/fisiología , Espinas Dendríticas/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Receptor EphA4/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/deficiencia , Espinas Dendríticas/efectos de los fármacos , Embrión de Mamíferos , Activación Enzimática , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Técnicas de Placa-Clamp/métodos , Fosforilación , Receptor EphA1/genética , Receptor EphA1/metabolismo , Transfección/métodos , Tirosina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
18.
Neuron ; 45(4): 525-38, 2005 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-15721239

RESUMEN

NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.


Asunto(s)
Espinas Dendríticas/fisiología , Proteínas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Transcripción/metabolismo , Valina/análogos & derivados , Proteína de Unión al GTP rac1/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Animales Recién Nacidos , Western Blotting/métodos , Encéfalo/citología , Encéfalo/metabolismo , Calcio/metabolismo , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Clonación Molecular/métodos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Espinas Dendríticas/ultraestructura , Interacciones Farmacológicas , Ácido Egtácico/farmacología , Efrina-B1/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido , Humanos , Inmunohistoquímica/métodos , Inmunoprecipitación/métodos , Microscopía Inmunoelectrónica/métodos , Modelos Neurológicos , Proteínas de Neoplasias , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/antagonistas & inhibidores , ARN sin Sentido/farmacología , ARN Interferente Pequeño , Ratas , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/clasificación , Sinaptosomas/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Tetrodotoxina/farmacología , Factores de Tiempo , Factores de Transcripción/antagonistas & inhibidores , Transfección/métodos , Valina/farmacología , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA