Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 370: 122386, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260284

RESUMEN

The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.

2.
Environ Res ; 257: 119122, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734288

RESUMEN

Industrial development has resulted in economic progress and the well-being of the society. At the same time, the impact of the industrial complex has disrupted the environment and resulted in climate change related impacts. The purpose of this study was to carry out an exploratory diagnosis and propose a technological change and sustainable industrial development index at the international level. Therefore, a network study was conducted to identify the main nodes and thematic clusters associated with cleaner production. A patent analysis was applied to technologies related three selected/relevant areas of cleaner production, i.e. carbon footprint, wastewater treatment, and renewable energy. Additionally, based on factor analysis, an index including different indicators related to scientific, technological, economic, environmental, and social issues was developed and proposed in this study.


Asunto(s)
Huella de Carbono , Desarrollo Industrial , Organización para la Cooperación y el Desarrollo Económico , Desarrollo Sostenible , Energía Renovable , Tecnología
3.
Chemosphere ; 358: 142182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685321

RESUMEN

Globally, air pollution is an unfortunate aftermath of rapid industrialization and urbanization. Although the best strategy is to prevent air pollution, it is not always feasible. This makes it imperative to devise and implement techniques that can clean the air continuously. Plants and microbes have a natural potential to transform or degrade pollutants. Hence, strategies that use this potential of living biomass to remediate air pollution seem to be promising. The simplest future trend can be planting suitable plant-microbe species capable of removing air pollutants like SO2, CO2, CO, NOX and particulate matter (PM) along roadsides and inside the buildings. Established wastewater treatment strategies such as microbial fuel cells (MFC) and constructed wetlands (CW) can be suitably modified to ameliorate air pollution. Green architecture involving green walls and green roofs is facile and aesthetic, providing urban ecosystem services. Certain microbe-based bioreactors such as bioscrubbers and biofilters may be useful in small confined spaces. Several generative models have been developed to assist with planning and managing green spaces in urban locales. The physiological limitations of using living organisms can be circumvent by applying biotechnology and transgenics to improve their potential. This review provides a comprehensive update on not just the plants and associated microbes for the mitigation of air pollution, but also lists the technologies that are available and/or can be modified and used for air pollution control. The article also gives a detailed analysis of this topic in the form of strengths-weaknesses-opportunities-challenges (SWOC). The strategies mentioned in this review would help to attain corporate Environmental Social and Governance (ESG) and Sustainable Development Goals (SDGs), while reducing carbon footprint in the urban scenario. The review aims to emphasise that urbanization is possible while tackling air pollution using facile, green techniques involving plants and associated microbes.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Biodegradación Ambiental , Plantas , Contaminación del Aire/prevención & control , Plantas/metabolismo , Plantas/microbiología , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/metabolismo , Humedales , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA