Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Elife ; 122024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968292

RESUMEN

A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.


Asunto(s)
Adenosina Trifosfato , Unión Proteica , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Anaerobiosis , Nucleótidos de Desoxiadenina/metabolismo , Dominio Catalítico , Conformación Proteica , Especificidad por Sustrato , Multimerización de Proteína , Modelos Moleculares
2.
Sci Rep ; 13(1): 5351, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005440

RESUMEN

Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.


Asunto(s)
Proteínas Hierro-Azufre , Methanococcus , Humanos , Methanococcus/genética , Uridina/metabolismo , Cisteína/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/genética , Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo
3.
Nucleic Acids Res ; 50(22): 12969-12978, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36533440

RESUMEN

Sulfuration of uridine 8, in bacterial and archaeal tRNAs, is catalyzed by enzymes formerly known as ThiI, but renamed here TtuI. Two different classes of TtuI proteins, which possess a PP-loop-containing pyrophosphatase domain that includes a conserved cysteine important for catalysis, have been identified. The first class, as exemplified by the prototypic Escherichia coli enzyme, possesses an additional C-terminal rhodanese domain harboring a second cysteine, which serves to form a catalytic persulfide. Among the second class of TtuI proteins that do not possess the rhodanese domain, some archaeal proteins display a conserved CXXC + C motif. We report here spectroscopic and enzymatic studies showing that TtuI from Methanococcus maripaludis and Pyrococcus furiosus can assemble a [4Fe-4S] cluster that is essential for tRNA sulfuration activity. Moreover, structural modeling studies, together with previously reported mutagenesis experiments of M. maripaludis TtuI, indicate that the [4Fe-4S] cluster is coordinated by the three cysteines of the CXXC + C motif. Altogether, our results raise a novel mechanism for U8-tRNA sulfuration, in which the cluster is proposed to catalyze the transfer of sulfur atoms to the activated tRNA substrate.


Asunto(s)
Archaea , Cisteína , Proteínas Hierro-Azufre , ARN de Transferencia , Tiosulfato Azufretransferasa , Archaea/enzimología , Archaea/genética , Catálisis , Cisteína/metabolismo , Proteínas Hierro-Azufre/metabolismo , ARN de Transferencia/metabolismo , Tiosulfato Azufretransferasa/química , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo , Secuencias de Aminoácidos , Mutagénesis , Dominios Proteicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo
4.
Nat Commun ; 13(1): 2700, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577776

RESUMEN

Ribonucleotide reductase (RNR) is an essential enzyme that catalyzes the synthesis of DNA building blocks in virtually all living cells. NrdR, an RNR-specific repressor, controls the transcription of RNR genes and, often, its own, in most bacteria and some archaea. NrdR senses the concentration of nucleotides through its ATP-cone, an evolutionarily mobile domain that also regulates the enzymatic activity of many RNRs, while a Zn-ribbon domain mediates binding to NrdR boxes upstream of and overlapping the transcription start site of RNR genes. Here, we combine biochemical and cryo-EM studies of NrdR from Streptomyces coelicolor to show, at atomic resolution, how NrdR binds to DNA. The suggested mechanism involves an initial dodecamer loaded with two ATP molecules that cannot bind to DNA. When dATP concentrations increase, an octamer forms that is loaded with one molecule each of dATP and ATP per monomer. A tetramer derived from this octamer then binds to DNA and represses transcription of RNR. In many bacteria - including well-known pathogens such as Mycobacterium tuberculosis - NrdR simultaneously controls multiple RNRs and hence DNA synthesis, making it an excellent target for novel antibiotics development.


Asunto(s)
Ribonucleótido Reductasas , Streptomyces coelicolor , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Nucleótidos/química , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Streptomyces coelicolor/metabolismo
5.
Curr Opin Struct Biol ; 65: 69-78, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32652441

RESUMEN

In all domains of life, ribonucleic acid (RNA) maturation includes post-transcriptional chemical modifications of nucleosides. Many sulfur-containing nucleosides have been identified in transfer RNAs (tRNAs), such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), 2-methylthioadenosine (ms2A). These modifications are essential for accurate and efficient translation of the genetic code from messenger RNA (mRNA) for protein synthesis. This review summarizes the recent discoveries concerning the mechanistic and structural characterization of tRNA thiolation enzymes that catalyze the non-redox substitution of oxygen for sulfur in nucleosides. Two mechanisms have been described. One involves persulfide formation on catalytic cysteines, while the other uses a [4Fe-4S] cluster, chelated by three conserved cysteines only, as a sulfur carrier.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Mensajero , ARN de Transferencia , Archaea , Bacterias , Biocatálisis , Oxígeno/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Azufre/metabolismo
6.
Sci Rep ; 8(1): 17254, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467384

RESUMEN

Acyl-CoA:diacylglycerol acyltransferases 3 (DGAT3) are described as plant cytosolic enzymes synthesizing triacylglycerol. Their protein sequences exhibit a thioredoxin-like ferredoxin domain typical of a class of ferredoxins harboring a [2Fe-2S] cluster. The Arabidopsis thaliana DGAT3 (AtDGAT3; At1g48300) protein is detected in germinating seeds. The recombinant purified protein produced from Escherichia coli, although very unstable, exhibits DGAT activity in vitro. A shorter protein version devoid of its N-terminal putative chloroplast transit peptide, Δ46AtDGAT3, was more stable in vitro, allowing biochemical and spectroscopic characterization. The results obtained demonstrate the presence of a [2Fe-2S] cluster in the protein. To date, AtDGAT3 is the first metalloprotein described as a DGAT.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Escherichia coli/crecimiento & desarrollo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/química , Cloroplastos/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Escherichia coli/genética , Germinación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Dominios Proteicos , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Semillas/metabolismo , Semillas/fisiología , Tiorredoxinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(28): 7355-7360, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655838

RESUMEN

Sulfur is present in several nucleosides within tRNAs. In particular, thiolation of the universally conserved methyl-uridine at position 54 stabilizes tRNAs from thermophilic bacteria and hyperthermophilic archaea and is required for growth at high temperature. The simple nonredox substitution of the C2-uridine carbonyl oxygen by sulfur is catalyzed by tRNA thiouridine synthetases called TtuA. Spectroscopic, enzymatic, and structural studies indicate that TtuA carries a catalytically essential [4Fe-4S] cluster and requires ATP for activity. A series of crystal structures shows that (i) the cluster is ligated by only three cysteines that are fully conserved, allowing the fourth unique iron to bind a small ligand, such as exogenous sulfide, and (ii) the ATP binding site, localized thanks to a protein-bound AMP molecule, a reaction product, is adjacent to the cluster. A mechanism for tRNA sulfuration is suggested, in which the unique iron of the catalytic cluster serves to bind exogenous sulfide, thus acting as a sulfur carrier.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , Compuestos de Sulfhidrilo/química , Azufre/química , Sitios de Unión , Catálisis , Clonación Molecular , Genoma Bacteriano , Proteínas Hierro-Azufre/química , Modelos Biológicos , Familia de Multigenes , Oxidación-Reducción , ARN de Transferencia/genética , Espectrofotometría Ultravioleta , Sulfurtransferasas/genética , Thermotoga maritima/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA