Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(7): 2015-2022, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349906

RESUMEN

We propose a way for obtaining a classical free energy density functional for electrolytes based on a first-principle many-body partition function. Via a one-loop expansion, we include coulombic correlations beyond the conventional mean-field approximation. To examine electrochemical interfaces, we integrate the electrolyte free energy functional into a hybrid quantum-classical model. This scheme self-consistently couples electronic, ionic, and solvent degrees of freedom and incorporates electrolyte correlation effects. The derived free energy functional causes a correlation-induced enhancement in interfacial counterion density and leads to an overall increase in capacitance. This effect is partially compensated by a reduction of the dielectric permittivity of interfacial water. At larger surface charge densities, ion crowding at the interface stifles these correlation effects. While scientifically intriguing already at planar interfaces, we anticipate these correlation effects to play an essential role for electrolytes in nanoconfinement.

2.
J Chem Phys ; 158(12): 124129, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003768

RESUMEN

The water electrolysis reaction involves a large kinetic overvoltage, and considerable research efforts are currently devoted to the search for better electrocatalysts. It is commonly expected that, at least, in principle, an ideal electrocatalyst would enable significant reaction rates close to the equilibrium voltage. In the present work, we question this expectation. For reactions, such as water electrolysis, which involve a significant change in the concentration between the reactant and product states, the position of the equilibrium voltage generally becomes decoupled from the onset of macroscopic kinetic currents. The reason is the dependence of the equilibrium voltage on the concentrations of both reactant and product species, whereas the forward rate of the reaction does not, in general, depend on the latter. Based on a new ideal gas reference for association/dissociation reactions, we develop a formalism to decompose the equilibrium voltage of electrolysis reactions into two distinct contributions: first, a contribution due to unbalanced relative concentrations between reactants and products second, a contribution due to the (mis)alignment of reactant and product states within the potential energy surface. The latter defines an intrinsic "kinetic reference voltage" that agrees remarkably well with the experimentally observed onset of water electrolysis, providing a new perspective on the origin of a significant fraction of the respective overvoltage. We expect the concept of kinetic reference voltages/potentials to be also useful in the context of other reactions involving significant concentration changes from the reactant to the product.

3.
J Chem Theory Comput ; 19(3): 1023-1034, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692444

RESUMEN

Classical molecular dynamics (MD) simulations of electrolyte systems are important to gain insight into the atom-scale properties that determine the battery-relevant performance. The recent Tinker-HP software release enables efficient and accurate MD simulations with the AMOEBA polarizable force field. In this work, we developed a procedure to construct a universal AMOEBA model for the solvent family of glymes (glycol methyl ethers), which involves a refinement scheme for valence parameters by fitting the AMOEBA-derived atomic forces to those computed at the DFT level. The refined AMOEBA model provides a good description of both local and nonlocal properties in terms of the spectroscopic response of glyme molecules, as well as the liquid glyme density and dielectric constant. In addition, the complexation energies of alkali and alkaline-earth metal cations with tetraglyme molecules obtained from AMOEBA calculations are in good agreement with DFT results, demonstrating the suitability of the developed AMOEBA model for an accurate simulation of glyme-based battery electrolytes. We also expect the procedure to be transferable to the development of AMOEBA models for other battery electrolyte systems.

4.
Energy Environ Sci ; 15(6): 2519-2528, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36204599

RESUMEN

Carefully assessing the energetics along the pathway of the oxygen evolution reaction (OER), our computational study reveals that the "classical" OER mechanism on the (110) surface of iridium dioxide (IrO2) must be reconsidered. We find that the OER follows a bi-nuclear mechanism with adjacent top surface oxygen atoms as fixed adsorption sites, whereas the iridium atoms underneath play an indirect role and maintain their saturated 6-fold oxygen coordination at all stages of the reaction. The oxygen molecule is formed, via an Ir-OOOO-Ir transition state, by association of the outer oxygen atoms of two adjacent Ir-OO surface entities, leaving two intact Ir-O entities at the surface behind. This is drastically different from the commonly considered mono-nuclear mechanism where the O2 molecule evolves by splitting of the Ir-O bond in an Ir-OO entity. We regard the rather weak reducibility of crystalline IrO2 as the reason for favoring the novel pathway, which allows the Ir-O bonds to remain stable and explains the outstanding stability of IrO2 under OER conditions. The establishment of surface oxygen atoms as fixed electrocatalytically active sites on a transition-metal oxide represents a paradigm shift for the understanding of water oxidation electrocatalysis, and it reconciles the theoretical understanding of the OER mechanism on iridium oxide with recently reported experimental results from operando X-ray spectroscopy. The novel mechanism provides an efficient OER pathway on a weakly reducible oxide, defining a new strategy towards the design of advanced OER catalysts with combined activity and stability.

5.
J Chem Theory Comput ; 18(3): 1883-1893, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35170945

RESUMEN

Computational studies of electrochemical interfaces based on density-functional theory (DFT) play an increasingly important role in the present research on electrochemical processes for energy conversion and storage. The homogeneous background method (HBM) offers a straightforward approach to charge the electrochemical system within DFT simulations, but it typically requires the specification of the active fraction of excess electrons based on a certain choice of the electrode-electrolyte boundary location, which can be difficult in the presence of electrode-surface adsorbates or explicit solvent molecules. In this work, we present a methodological advancement of the HBM, both facilitating and extending its applicability. The advanced version requires neither energy corrections nor the specification of the active fraction of excess electrons, providing a versatile and readily available method for the simulation of charged interfaces when adsorbates or explicit solvent molecules are present. Our computational DFT results for Pt(111), Au(111), and Li(100) metal electrodes in high-dielectric-constant solvents demonstrate an excellent agreement in the interfacial charging characteristics obtained from simulations with the advanced HBM in comparison with the (linearized) Poisson-Boltzmann model (PBM).

6.
Nat Commun ; 11(1): 1471, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193391
7.
J Mass Spectrom ; 53(12): 1214-1221, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30320941

RESUMEN

A multivariate calibration method for mass spectrometry is presented that enables a quantitative analysis of gas mixtures containing interfering gases that contribute to the same mass-to-charge ratios at nominal resolution. Multiple calibration gas mixtures with linearly independent compositions are used in order to obtain the calibration constants for the contribution of each gas to each of the mass-to-charge ratio peaks. The method was successfully applied to the quantitative detection of CO in a mixture with CO2 and N2 , which represents a difficulty commonly encountered in heterogeneous catalysis and electrocatalysis research.

8.
Nat Mater ; 16(9): 925-931, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28714982

RESUMEN

The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material's surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

9.
Sci Rep ; 5: 12167, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26178185

RESUMEN

In recent years, the oxygen evolution reaction (OER) has attracted increased research interest due to its crucial role in electrochemical energy conversion devices for renewable energy applications. The vast majority of OER catalyst materials investigated are metal oxides of various compositions. The experimental results obtained on such materials strongly suggest the existence of a fundamental and universal correlation between the oxygen evolution activity and the corrosion of metal oxides. This corrosion manifests itself in structural changes and/or dissolution of the material. We prove from basic thermodynamic considerations that any metal oxide must become unstable under oxygen evolution conditions irrespective of the pH value. The reason is the thermodynamic instability of the oxygen anion in the metal oxide lattice. Our findings explain many of the experimentally observed corrosion phenomena on different metal oxide OER catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA