Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673989

RESUMEN

Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.


Asunto(s)
Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide , Proteolisis , Tirosina Quinasa c-Mer , Humanos , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células THP-1 , Macrófagos/metabolismo , Proteína S/metabolismo , Monocitos/metabolismo , Acetato de Tetradecanoilforbol/farmacología
3.
Cell Commun Signal ; 21(1): 195, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537628

RESUMEN

Tyro3, Axl, and Mertk (abbreviated TAMs) comprise a family of homologous type 1 receptor tyrosine kinases (RTKs) that have been implicated as inhibitory receptors that dampen inflammation, but their roles in the pathogenesis of rheumatoid arthritis remains understudied. Here, to investigate TAMs in an inflammatory arthritis model, antibody-induced arthritis in single TAM-deficient mice (Tyro3- KO, Axl-KO, Mertk-KO) was induced by K/BxN serum injection. Subsequently, joint inflammation and cytokine levels, as well as the expression of Fcγ Rs and complement receptors were assessed in WT and TAM-deficient mice. Compared with littermate control mice, Axl-/- and Mertk-/- mice developed more severe antibody-induced arthritis, while in contrast, Tyro3-/- mice showed diminished joint inflammation. Concomitantly, the levels of cytokines in joints of Axl-/- and Mertk-/- mice were also significantly increased, while cytokines in the Tyro3-/- joint tissues were decreased. At the molecular and cellular level, TAMs showed distinct expression patterns, whereby monocytes expressed Axl and Mertk, but no Tyro3, while neutrophils expressed Axl and Tyro3 but little Mertk. Moreover, expression of Fcγ receptors and C5aR showed different patterns with TAMs expression, whereby FcγRIV was higher in monocytes of Axl-/- and Mertk-/- mice compared to wild-type mice, while Tyro3-/- neutrophils showed lower expression levels of FcγRI, FcγRIII and FcγRIV. Finally, expression of C5aR was increased in Mertk-/- monocytes, and was decreased in Tyro3-/- neutrophils. These data indicate that Axl, Mertk and Tyro3 have distinct functions in antibody-induced arthritis, due in part to the differential regulation of cytokines production, as well as expression of FcγRs and C5aR. Video Abstract.


Asunto(s)
Artritis , Tirosina Quinasa del Receptor Axl , Proteínas Tirosina Quinasas Receptoras , Receptores de IgG , Tirosina Quinasa c-Mer , Animales , Ratones , Anticuerpos , Tirosina Quinasa del Receptor Axl/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Proteínas Portadoras , Citocinas/metabolismo , Inflamación , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de IgG/metabolismo , Tirosina
4.
Front Immunol ; 14: 1135373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545504

RESUMEN

TAM receptors (TYRO3, AXL, and MERTK) comprise a family of homologous receptor tyrosine kinases (RTK) that are expressed across a range of liquid and solid tumors where they contribute to both oncogenic signaling to promote tumor proliferation and survival, as well as expressed on myeloid and immune cells where they function to suppress host anti-tumor immunity. In recent years, several strategies have been employed to inhibit TAM kinases, most notably small molecule tyrosine kinase inhibitors and inhibitory neutralizing monoclonal antibodies (mAbs) that block receptor dimerization. Targeted protein degraders (TPD) use the ubiquitin proteasome pathway to redirect E3 ubiquitin ligase activity and target specific proteins for degradation. Here we employ first-in-class TPDs specific for MERTK/TAMs that consist of a cereblon E3 ligase binder linked to a tyrosine kinase inhibitor targeting MERTK and/or AXL and TYRO3. A series of MERTK TPDs were designed and investigated for their capacity to selectively degrade MERTK chimeric receptors, reduce surface expression on primary efferocytic bone marrow-derived macrophages, and impact on functional reduction in efferocytosis (clearance of apoptotic cells). We demonstrate proof-of-concept and establish that TPDs can be tailored to either selectivity degrades MERTK or concurrently degrade multiple TAMs and modulate receptor expression in vitro and in vivo. This work demonstrates the utility of proteome editing, enabled by tool degraders developed here towards dissecting the therapeutically relevant pathway biology in preclinical models, and the ability for TPDs to degrade transmembrane proteins. These data also provide proof of concept that TPDs may serve as a viable therapeutic strategy for targeting MERTK and other TAMs and that this technology could be expanded to other therapeutically relevant transmembrane proteins.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Neoplasias , Humanos , Tirosina Quinasa c-Mer/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteínas de la Membrana
6.
Cell Commun Signal ; 21(1): 127, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280623

RESUMEN

The School of Life Sciences at the Jawaharlal Nehru University in New Delhi, India held an International Symposium on Mitochondria, Cell Death and Human Diseases on February 18-19, 2023. The meeting provided a highly interactive forum for scientific discussion, cultural exchange, and collaborations between international scientists working in diverse areas of mitochondrial biology, cell death, and cancer. The two-day symposium attracted more than 180 delegates that included leading international scientists, early career researchers in India, as well as postdoctoral fellows and students. Several of the students, postdoctoral fellows, and junior faculty presented platform talks and had a chance to showcase the depth and emerging progress in biomedical research in India. The meeting will be instrumental for planning future congresses and symposium throughout India, not only to focus on mitochondrial biology, cell death and cancer but to foster continued ferment and collaborations in the biological sciences throughout India.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Universidades , Muerte Celular , India
7.
Head Neck ; 45(5): 1255-1271, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939040

RESUMEN

BACKGROUND: The tyrosine kinase receptors Axl and MerTK are highly overexpressed in head and neck cancer (HNC) cells, where they are critical drivers of survival, proliferation, metastasis, and therapeutic resistance. METHODS: We investigated the role of Axl and MerTK in creating an immunologically "cold" tumor immune microenvironment (TIME) by targeting both receptors simultaneously with a small molecule inhibitor of Axl and MerTK (INCB081776). Effects of INCB081776 and/or anti-PDL1 on mouse oral cancer (MOC) cell growth and on the TIME were evaluated. RESULTS: Targeting Axl and MerTK can reduce M2 and induce M1 macrophage polarization. In vivo, INCB081776 treatment alone or with anti-PDL1 appears to slow MOC tumor growth, increase proinflammatory immune infiltration, and decrease anti-inflammatory immune infiltration. CONCLUSIONS: This data indicates that simultaneous targeting of Axl and MerTK with INCB081776, either alone or in combination with anti-PDL1, slows tumor growth and creates a proinflammatory TIME in mouse models of HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas , Animales , Ratones , Tirosina Quinasa c-Mer , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Microambiente Tumoral
8.
Int Rev Cell Mol Biol ; 368: 35-59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35636929

RESUMEN

Mertk, a type I Receptor Tyrosine Kinase (RTK) and member of the TAM (Tyro3, Axl, and Mertk) family of homologous tyrosine kinases, has important roles in signal transduction both homeostatically on normal cells as well as patho-physiologically on both tumor-associated macrophages and malignant cells by its overexpression in a wide array of cancers. The main ligands of Mertk are Vitamin K-modified endogenous proteins Gas6 and Protein S (ProS1), heterobifunctional modular proteins that bind Mertk via two carboxyl-terminal laminin-like globular (LG) domains, and an N-terminal Gla domain that binds anionic phospholipids, whereby externalized phosphatidylserine (PS) on stressed viable and caspase-activated apoptotic cells is most emblematic. Recent studies indicate that Vitamin K-dependent γ-carboxylation on the N-terminal Gla domain of Gas6 and Protein S is necessary for PS binding and Mertk activation, implying that Mertk is preferentially active in tissues where there is high externalized PS, such as the tumor microenvironment (TME) and acute virally infected tissues. Once stimulated, activated Mertk can provide a survival advantage for cancer cells as well as drive compensatory proliferation. On monocytes and tumor-associated macrophages, Mertk promotes efferocytosis and acts as an inhibitory receptor that impairs host anti-tumor immunity, functioning akin to a myeloid checkpoint inhibitor. In recent years, inhibition of Mertk has been implicated in a dual role to enhance the sensitivity of cancer cells to cytotoxic agents along with improving host anti-tumor immunity with anti-PD-1/PD-L1 immunotherapy. Here, we examine the rationale of Mertk-targeted immunotherapies, the current and potential therapeutic strategies, the clinical status of Mertk-specific therapies, and potential challenges and obstacles for Mertk-focused therapies.


Asunto(s)
Neoplasias , Proteína S , Biología , Humanos , Neoplasias/terapia , Proteínas Proto-Oncogénicas/metabolismo , Microambiente Tumoral , Vitamina K , Tirosina Quinasa c-Mer/metabolismo
9.
J Biol Chem ; 298(7): 102034, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35588784

RESUMEN

Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as "innate apoptotic immunity (IAI)" have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity.


Asunto(s)
Apoptosis , Inmunidad Innata , Fagocitosis , Fosfatidilserinas , Animales , Apoptosis/fisiología , Línea Celular , Humanos , Inmunomodulación , Ratones , Fagocitosis/fisiología , Fosfatidilserinas/metabolismo
10.
J Immunol ; 207(2): 436-448, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34215655

RESUMEN

Phosphatidylserine (PS)-targeting monoclonal Abs (mAbs) that directly target PS and target PS via ß2-gp1 (ß2GP1) have been in preclinical and clinical development for over 10 y for the treatment of infectious diseases and cancer. Although the intended targets of PS-binding mAbs have traditionally included pathogens as well as stressed tumor cells and its associated vasculature in oncology, the effects of PS-targeting mAbs on activated immune cells, notably T cells, which externalize PS upon Ag stimulation, is not well understood. Using human T cells from healthy donor PBMCs activated with an anti-CD3 + anti-CD28 Ab mixture (anti-CD3/CD28) as a model for TCR-mediated PS externalization and T cell stimulation, we investigated effects of two different PS-targeting mAbs, 11.31 and bavituximab (Bavi), on TCR activation and TCR-mediated cytokine production in an ex vivo paradigm. Although 11.31 and Bavi bind selectivity to anti-CD3/28 activated T cells in a PS-dependent manner, surprisingly, they display distinct functional activities in their effect on IFN-γ and TNF-ɑ production, whereby 11.31, but not Bavi, suppressed cytokine production. This inhibitory effect on anti-CD3/28 activated T cells was observed on both CD4+ and CD8+ cells and independently of monocytes, suggesting the effects of 11.31 were directly mediated by binding to externalized PS on activated T cells. Imaging showed 11.31 and Bavi bind at distinct focal depots on the cell membrane. Collectively, our findings indicate that PS-targeting mAb 11.31 suppresses cytokine production by anti-CD3/28 activated T cells.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/inmunología , Muromonab-CD3/inmunología , Fosfatidilserinas/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Complejo CD3/inmunología , Línea Celular , Células HEK293 , Humanos , Leucocitos Mononucleares/inmunología , Activación de Linfocitos/inmunología
11.
Nat Commun ; 12(1): 2624, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976143

RESUMEN

The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.


Asunto(s)
Colitis Ulcerosa/inmunología , Interferones/metabolismo , Mucosa Intestinal/patología , Repitelización/inmunología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Masculino , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Organismos Libres de Patógenos Específicos
12.
Cancer Res ; 81(3): 698-712, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239426

RESUMEN

Despite the promising clinical benefit of targeted and immune checkpoint blocking therapeutics, current strategies have limited success in breast cancer, indicating that additional inhibitory pathways are required to complement existing therapeutics. TAM receptors (Tyro-3, Axl, and Mertk) are often correlated with poor prognosis because of their capacities to sustain an immunosuppressive environment. Here, we ablate Axl on tumor cells using CRISPR/Cas9 gene editing, and by targeting Mertk in the tumor microenvironment (TME), we observed distinct functions of TAM as oncogenic kinases, as well as inhibitory immune receptors. Depletion of Axl suppressed cell intrinsic oncogenic properties, decreased tumor growth, reduced the incidence of lung metastasis and increased overall survival of mice when injected into mammary fat pad of syngeneic mice, and demonstrated synergy when combined with anti-PD-1 therapy. Blockade of Mertk function on macrophages decreased efferocytosis, altered the cytokine milieu, and resulted in suppressed macrophage gene expression patterns. Mertk-knockout mice or treatment with anti-Mertk-neutralizing mAb also altered the cellular immune profile, resulting in a more inflamed tumor environment with enhanced T-cell infiltration into tumors and T-cell-mediated cytotoxicity. The antitumor activity from Mertk inhibition was abrogated by depletion of cytotoxic CD8α T cells by using anti-CD8α mAb or by transplantation of tumor cells into B6.CB17-Prkdc SCID mice. Our data indicate that targeting Axl expressed on tumor cells and Mertk in the TME is predicted to have a combinatorial benefit to enhance current immunotherapies and that Axl and Mertk have distinct functional activities that impair host antitumor response. SIGNIFICANCE: This study demonstrates how TAM receptors act both as oncogenic tyrosine kinases and as receptors that mediate immune evasion in cancer progression.


Asunto(s)
Evasión Inmune/inmunología , Neoplasias Mamarias Experimentales/inmunología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Transducción de Señal/inmunología , Tirosina Quinasa c-Mer/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Evasión Inmune/genética , Inmunoterapia/métodos , Estimación de Kaplan-Meier , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/terapia , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl
13.
Cells ; 9(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003477

RESUMEN

The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.


Asunto(s)
Apoptosis/inmunología , Muerte Celular/inmunología , Terapia Molecular Dirigida/métodos , Neoplasias/inmunología , Fagocitosis/inmunología , Fosfatidilserinas/metabolismo , Escape del Tumor , Microambiente Tumoral/inmunología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Humanos , Lisofosfatidilcolinas/metabolismo , Lisofosfolípidos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fagocitosis/genética , Nucleótidos de Purina/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
14.
Cell Commun Signal ; 18(1): 134, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843053

RESUMEN

Chimeric Antigen Receptor (CAR) immunotherapy utilizes genetically-engineered immune cells that express a unique cell surface receptor that combines tumor antigen specificity with immune cell activation. In recent clinical trials, the adoptive transfer of CAR-modified immune cells (including CAR-T and CAR-NK cells) into patients has been remarkably successful in treating multiple refractory blood cancers. To improve safety and efficacy, and expand potential applicability to other cancer types, CARs with different target specificities and sequence modifications are being developed and tested by many laboratories. Despite the overall progress in CAR immunotherapy, conventional tools to design and evaluate the efficacy and safety of CAR immunotherapies can be inaccurate, time-consuming, costly, and labor-intensive. Furthermore, existing tools cannot always determine how responsive individual patients will be to a particular CAR immunotherapy. Recent work in our laboratory suggests that the quality of the immunological synapse (IS) can accurately predict CAR-modified cell efficacy (and toxicity) that can correlate with clinical outcomes. Here we review current efforts to develop a Synapse Predicts Efficacy (SPE) system for easy, rapid and cost-effective evaluation of CAR-modified immune cell immunotherapy. Ultimately, we hypothesize the conceptual basis and clinical application of SPE will serve as an important parameter in evaluating CAR immunotherapy and significantly advance precision cancer immunotherapy. Video abstract Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., 'The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy". The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik's cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik's cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik's cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable.


Asunto(s)
Sinapsis Inmunológicas/metabolismo , Inmunoterapia , Receptores Quiméricos de Antígenos/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Ensayos Clínicos como Asunto , Humanos , Resultado del Tratamiento
15.
Mol Cancer Res ; 18(8): 1189-1201, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32321766

RESUMEN

The Crk adaptor protein, a critical modifier of multiple signaling pathways, is overexpressed in many cancers where it contributes to tumor progression and metastasis. Recently, we have shown that Crk interacts with the peptidyl prolyl cis-trans isomerase, Cyclophilin A (CypA; PP1A) via a G219P220Y221 (GPY) motif in the carboxyl-terminal linker region of Crk, thereby delaying pY221 phosphorylation and preventing downregulation of Crk signaling. Here, we investigate the physiologic significance of the CypA/Crk interaction and query whether CypA inhibition affects Crk signaling in vitro and in vivo. We show that CypA, when induced under conditions of hypoxia, regulates Crk pY221 phosphorylation and signaling in cancer cell lines. Using nuclear magnetic resonance spectroscopy, we show that CypA binds to the Crk GPY motif via the catalytic PPII domain of CypA, and small-molecule nonimmunosuppressive inhibitors of CypA (Debio-025) disrupt the CypA-CrkII interaction and restores phosphorylation of Crk Y221. In cultured cell lines, Debio-025 suppresses cell migration, and when administered in vivo in an orthotopic model of triple-negative breast cancer, Debio-025 showed antitumor efficacy either alone or in combination with anti-PD-1 mAb, reducing both tumor volume and metastatic lung dispersion. Furthermore, when analyzed by NanoString immune profiling, treatment of Debio-025 with anti-PD-1 mAb increased both T-cell signaling and innate immune signaling in tumor microenvironment. IMPLICATIONS: These data suggest that pharmacologic inhibition of CypA may provide a promising and unanticipated consequence in cancer biology, in part by targeting the CypA/CrkII axis that regulates cell migration, tumor metastasis, and host antitumor immune evasion.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Ciclosporina/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Isomerasa de Peptidilprolil/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ciclosporina/farmacología , Sinergismo Farmacológico , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Modelos Moleculares , Metástasis de la Neoplasia , Isomerasa de Peptidilprolil/química , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteínas Proto-Oncogénicas c-crk/química , Análisis de Secuencia de ARN , Microambiente Tumoral/efectos de los fármacos
16.
Cell Commun Signal ; 18(1): 41, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32160904

RESUMEN

Phosphatidylserine (PS) is an anionic phospholipid found on the membranes of a variety of organelles throughout the cell, most notably the plasma membrane. Under homeostatic conditions, PS is typically restricted to the inner leaflet of the plasma membrane. However, during cellular activation and/or induction of cell death, PS is externalized on the outer surface via the activation of phospholipid scramblases. Externalized PS not only changes the biochemical and biophysical properties of the plasma membrane but also initiates a series of interactions between endogenous extracellular proteins as well as receptors on neighboring cells to stimulate engulfment (efferocytosis) that influence the surrounding immune milieu. In this thematic series published in Cell Communication and Signaling, we feature review articles that highlight recent work in the field of PS biology, including the biochemistry and physiological significance of PS externalization, therapeutic applications and efforts to target PS, as well as posit open questions that remain in the field.


Asunto(s)
Membrana Celular/metabolismo , Enfermedades Transmisibles/metabolismo , Neoplasias/metabolismo , Fosfatidilserinas/fisiología , Animales , Comunicación Celular , Humanos , Transducción de Señal
17.
Cell Metab ; 31(2): 406-421.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31839486

RESUMEN

Nonalcoholic steatohepatitis (NASH) is emerging as a leading cause of chronic liver disease. However, therapeutic options are limited by incomplete understanding of the mechanisms of NASH fibrosis, which is mediated by activation of hepatic stellate cells (HSCs). In humans, human genetic studies have shown that hypomorphic variations in MERTK, encoding the macrophage c-mer tyrosine kinase (MerTK) receptor, provide protection against liver fibrosis, but the mechanisms remain unknown. We now show that holo- or myeloid-specific Mertk targeting in NASH mice decreases liver fibrosis, congruent with the human genetic data. Furthermore, ADAM metallopeptidase domain 17 (ADAM17)-mediated MerTK cleavage in liver macrophages decreases during steatosis to NASH transition, and mice with a cleavage-resistant MerTK mutant have increased NASH fibrosis. Macrophage MerTK promotes an ERK-TGFß1 pathway that activates HSCs and induces liver fibrosis. These data provide insights into the role of liver macrophages in NASH fibrosis and provide a plausible mechanism underlying MERTK as a genetic risk factor for NASH fibrosis.


Asunto(s)
Cirrosis Hepática/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tirosina Quinasa c-Mer/fisiología , Proteína ADAM17/metabolismo , Animales , Línea Celular , Enfermedad Crónica , Humanos , Hígado/citología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas
18.
Cancer Res ; 79(10): 2669-2683, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30877108

RESUMEN

Tyro3, Axl, and Mertk (TAM) represent a family of homologous tyrosine kinase receptors known for their functional role in phosphatidylserine (PS)-dependent clearance of apoptotic cells and also for their immune modulatory functions in the resolution of inflammation. Previous studies in our laboratory have shown that Gas6/PS-mediated activation of TAM receptors on tumor cells leads to subsequent upregulation of PD-L1, defining a putative PS→TAM receptor→PD-L1 inhibitory signaling axis in the cancer microenvironment that may promote tolerance. In this study, we tested combinations of TAM inhibitors and PD-1 mAbs in a syngeneic orthotopic E0771 murine triple-negative breast cancer model, whereby tumor-bearing mice were treated with pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 alone or in combination. Tyro3, Axl, and Mertk were differentially expressed on multiple cell subtypes in the tumor microenvironment. Although monotherapeutic administration of either pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 mAb therapy showed partial antitumor activity, combined treatment of BMS-777607 with anti-PD-1 significantly decreased tumor growth and incidence of lung metastasis. Moreover, combined treatment with BMS-777607 and anti-PD-1 showed increased infiltration of immune stimulatory T cells versus either monotherapy treatment alone. RNA NanoString profiling showed enhanced infiltration of antitumor effector T cells and a skewed immunogenic immune profile. Proinflammatory cytokines increased with combinational treatment. Together, these studies indicate that pan-TAM inhibitor BMS-777607 cooperates with anti-PD-1 in a syngeneic mouse model for triple-negative breast cancer and highlights the clinical potential for this combined therapy. SIGNIFICANCE: These findings show that pan-inhibition of TAM receptors in combination with anti-PD-1 may have clinical value as cancer therapeutics to promote an inflammatory tumor microenvironment and improve host antitumor immunity.


Asunto(s)
Aminopiridinas/farmacología , Anticuerpos Monoclonales/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Piridonas/farmacología , Neoplasias de la Mama Triple Negativas/terapia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Mama Triple Negativas/inmunología , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Nat Mater ; 18(3): 289-297, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664693

RESUMEN

Initiation of the innate sterile inflammatory response that can develop in response to microparticle exposure is little understood. Here, we report that a potent type 2 immune response associated with the accumulation of neutrophils, eosinophils and alternatively activated (M2) macrophages was observed in response to sterile microparticles similar in size to wear debris associated with prosthetic implants. Although elevations in interleukin-33 (IL-33) and type 2 cytokines occurred independently of caspase-1 inflammasome signalling, the response was dependent on Bruton's tyrosine kinase (BTK). IL-33 was produced by macrophages and BTK-dependent expression of IL-33 by macrophages was sufficient to initiate the type 2 response. Analysis of inflammation in patient periprosthetic tissue also revealed type 2 responses under aseptic conditions in patients undergoing revision surgery. These findings indicate that microparticle-induced sterile inflammation is initiated by macrophages activated to produce IL-33. They further suggest that both BTK and IL-33 may provide therapeutic targets for wear debris-induced periprosthetic inflammation.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Interleucina-33/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Falla de Prótesis , Artroplastia/efectos adversos , Caspasa 1/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Interleucina-33/biosíntesis , Macrófagos/inmunología , Transducción de Señal/efectos de los fármacos
20.
Mol Hum Reprod ; 25(2): 61-75, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462321

RESUMEN

STUDY QUESTION: Does the upregulation of the zinc finger E-box binding homeobox 2 (ZEB2) transcription factor in human trophoblast cells lead to alterations in gene expression consistent with an epithelial-mesenchymal transition (EMT) and a consequent increase in invasiveness? SUMMARY ANSWER: Overexpression of ZEB2 results in an epithelial-mesenchymal shift in gene expression accompanied by a substantial increase in the invasive capacity of human trophoblast cells. WHAT IS KNOWN ALREADY: In-vivo results have shown that cytotrophoblast differentiation into extravillous trophoblast involves an epithelial-mesenchymal transition. The only EMT master regulatory factor which shows changes consistent with extravillous trophoblast EMT status and invasive capacity is the ZEB2 transcription factor. STUDY DESIGN, SIZE, DURATION: This study is a mechanistic investigation of the role of ZEB2 in trophoblast differentiation. We generated stable ZEB2 overexpression clones using the epithelial BeWo and JEG3 choriocarcinoma lines. Using these clones, we investigated the effects of ZEB2 overexpression on the expression of EMT-associated genes and proteins, cell morphology and invasive capability. PARTICIPANTS/MATERIALS, SETTING, METHODS: We used lentiviral transduction to overexpress ZEB2 in BeWo and JEG3 cells. Stable clones were selected based on ZEB2 expression and morphology. A PCR array of EMT-associated genes was used to probe gene expression. Protein measurements were performed by western blotting. Gain-of-function was assessed by quantitatively measuring cell invasion rates using a Transwell assay, a 3D bioprinted placenta model and the xCelligenceTM platform. MAIN RESULTS AND THE ROLE OF CHANCE: The four selected clones (2 × BeWo, 2 × JEG3, based on ZEB2 expression and morphology) all showed gene expression changes indicative of an EMT. The two clones (1 × BeWo, 1 × JEG3) showing >40-fold increase in ZEB2 expression also displayed increased ZEB2 protein; the others, with increases in ZEB2 expression <14-fold did not. The two high ZEB2-expressing clones demonstrated robust increases in invasive capacity, as assessed by three types of invasion assay. These data identify ZEB2-mediated transcription as a key mechanism transforming the epithelial-like trophoblast into cells with a mesenchymal, invasive phenotype. LARGE SCALE DATA: PCR array data have been deposited in the GEO database under accession number GSE116532. LIMITATIONS, REASONS FOR CAUTION: These are in-vitro studies using choriocarcinoma cells and so the results should be interpreted in view of these limitations. Nevertheless, the data are consistent with in-vivo findings and are replicated in two different cell lines. WIDER IMPLICATIONS OF THE FINDINGS: The combination of these data with the in-vivo findings clearly identify ZEB2-mediated EMT as the mechanism for cytotrophoblast differentiation into extravillous trophoblast. Having characterized these cellular mechanisms, it will now be possible to identify the intracellular and extracellular regulatory components which control ZEB2 and trophoblast differentiation. It will also be possible to identify the aberrant factors which alter differentiation in invasive pathologies such as preeclampsia and abnormally invasive placenta (AKA accreta, increta, percreta). STUDY FUNDING AND COMPETING INTEREST(s): Funding was provided by the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Surgery at Hackensack Meridian Health, Hackensack, NJ. The 3D bioprinted placental model work done in Drs Kim and Fisher's labs was supported by the Children's National Medical Center. The xCELLigence work done in Dr Birge's lab was supported by NIH CA165077. The authors declare no competing interests.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Trofoblastos/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Factor de Crecimiento Epidérmico/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Trofoblastos/citología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA