Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Biol Cell ; 34(13): br21, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729016

RESUMEN

The aggregation of the disordered neuronal protein, α-Synuclein (αS), is the primary pathological feature of Parkinson's disease. Current hypotheses favor cell-to-cell spread of αS species as underlying disease progression, driving interest in identifying the molecular species and cellular processes involved in cellular internalization of αS. Prior work from our lab identified the chemically specific interaction between αS and the presynaptic adhesion protein neurexin-1ß (N1ß) to be capable of driving cellular internalization of both monomer and aggregated forms of αS. Here we explore the physical basis of N1ß-driven internalization of αS. Specifically, we show that spontaneous internalization of αS by SH-SY5Y and HEK293 cells expressing N1ß requires essentially all of the membrane-binding domain of αS; αS constructs truncated beyond residue 90 bind to N1ß in the plasma membrane of HEK cells, but are not internalized. Interestingly, before internalization, αS and N1ß codiffuse rapidly in the plasma membrane. αS constructs that are not internalized show very slow mobility themselves, as well as slow N1ß diffusion. Finally, we find that truncated αS is capable of blocking internalization of full-length αS. Our results draw attention to the potential therapeutic value of blocking αS-N1ß interactions.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Células HEK293 , Enfermedad de Parkinson/metabolismo
2.
Chem Commun (Camb) ; 58(99): 13724-13727, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36427021

RESUMEN

Herein, we evaluate near-infrared ATTO700 as an acceptor in SNAP- and Halo-tag protein labelling for Förster Resonance Energy Transfer (FRET) by ensemble and single molecule measurements. Microscopy of cell surface proteins in live cells is perfomed including super-resolution stimulated emission by depletion (STED) nanoscopy.


Asunto(s)
Microscopía , Nanotecnología , Transferencia Resonante de Energía de Fluorescencia , Proteínas
3.
PLoS Biol ; 17(6): e3000318, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31211781

RESUMEN

Cell-to-cell transmission of toxic forms of α-Synuclein (αS) is thought to underlie disease progression in Parkinson disease. αS in humans is constitutively N-terminally acetylated (αSacetyl), although the impact of this modification is relatively unexplored. Here, we report that αSacetyl is more effective at inducing intracellular aggregation in primary neurons than unmodified αS (αSun). We identify complex N-linked glycans as binding partners for αSacetyl and demonstrate that cellular internalization of αSacetyl is reduced significantly upon cleavage of extracellular N-linked glycans, but not other carbohydrates. We verify binding of αSacetyl to N-linked glycans in vitro, using both isolated glycans and cell-derived proteoliposomes. Finally, we identify neurexin 1ß, a neuronal glycoprotein, as capable of driving glycan-dependent uptake of αSacetyl. Importantly, our results are specific to αSacetyl because αSun does not demonstrate sensitivity for N-linked glycans in any of our assays. Our study identifies extracellular N-linked glycans-and the glycoprotein neurexin 1ß specifically-as key modulators of neuronal uptake of αSacetyl, drawing attention to the potential therapeutic value of αSacetyl-glycan interactions.


Asunto(s)
Polisacáridos/metabolismo , alfa-Sinucleína/metabolismo , Acetilación , Animales , Transporte Biológico , Línea Celular Tumoral , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Polisacáridos/fisiología , Cultivo Primario de Células
4.
Front Mol Neurosci ; 12: 309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998071

RESUMEN

A large fraction of the human genome encodes intrinsically disordered proteins/regions (IDPs/IDRs) that are involved in diverse cellular functions/regulation and dysfunctions. Moreover, several neurodegenerative disorders are associated with the pathological self-assembly of neuronal IDPs, including tau [Alzheimer's disease (AD)], α-synuclein [Parkinson's disease (PD)], and huntingtin exon 1 [Huntington's disease (HD)]. Therefore, there is an urgent and emerging clinical interest in understanding the physical and structural features of their functional and disease states. However, their biophysical characterization is inherently challenging by traditional ensemble techniques. First, unlike globular proteins, IDPs lack stable secondary/tertiary structures under physiological conditions and may interact with multiple and distinct biological partners, subsequently folding differentially, thus contributing to the conformational polymorphism. Second, amyloidogenic IDPs display a high aggregation propensity, undergoing complex heterogeneous self-assembly mechanisms. In this review article, we discuss the advantages of employing cutting-edge single-molecule fluorescence (SMF) techniques to characterize the conformational ensemble of three selected neuronal IDPs (huntingtin exon 1, tau, and α-synuclein). Specifically, we survey the versatility of these powerful approaches to describe their monomeric conformational ensemble under functional and aggregation-prone conditions, and binding to biological partners. Together, the information gained from these studies provides unique insights into the role of gain or loss of function of these disordered proteins in neurodegeneration, which may assist the development of new therapeutic molecules to prevent and treat these devastating human disorders.

5.
Methods Enzymol ; 611: 703-734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30471705

RESUMEN

Intrinsically disordered proteins (IDPs) and regions (IDRs) make up a significant part of the proteome and facilitate a wide range of physiological and pathological functions that are only beginning to be understood. As such, they are highly attractive targets for drug development and bioengineering. However, their inability to adopt well-defined structures provides significant obstacles for developing ligands that regulate their behaviors. In this chapter, we review how the conformational flexibility of IDPs and their propensity to phase separate make them tractable targets for small-molecule manipulation. We also describe both theoretical and experimental approaches to characterize disordered proteins, including novel thermodynamic and single-molecule techniques that help identify complimentary partners of IDPs and their ability to shift protein ensembles toward preferred conformations.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Espectrometría de Fluorescencia/métodos , Animales , Descubrimiento de Drogas/métodos , Humanos , Ligandos , Modelos Moleculares , Agregado de Proteínas/efectos de los fármacos , Conformación Proteica , Proteómica/métodos , Termodinámica
6.
Nat Commun ; 9(1): 1312, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615609

RESUMEN

Peptide mediated gain-of-toxic function is central to pathology in Alzheimer's, Parkinson's and diabetes. In each system, self-assembly into oligomers is observed and can also result in poration of artificial membranes. Structural requirements for poration and the relationship of structure to cytotoxicity is unaddressed. Here we focus on islet amyloid polypeptide (IAPP) mediated loss-of-insulin secreting cells in patients with diabetes. Newly developed methods enable structure-function enquiry to focus on intracellular oligomers composed of hundreds of IAPP. The key insights are that porating oligomers are internally dynamic, grow in discrete steps and are not canonical amyloid. Moreover, two classes of poration occur; an IAPP-specific ligand establishes that only one is cytotoxic. Toxic rescue occurs by stabilising non-toxic poration without displacing IAPP from mitochondria. These insights illuminate cytotoxic mechanism in diabetes and also provide a generalisable approach for enquiry applicable to other partially ordered protein assemblies.


Asunto(s)
Amiloide/química , Diabetes Mellitus/metabolismo , Mutación con Ganancia de Función , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Amiloidosis/metabolismo , Animales , Línea Celular , Supervivencia Celular , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Insulinoma/metabolismo , Microscopía Confocal , Mitocondrias/metabolismo , Conformación Proteica , Ratas
7.
Curr Opin Struct Biol ; 49: 36-43, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29306779

RESUMEN

Intrinsically disordered proteins (IDPs) have critical roles in a diverse array of cellular functions. Of relevance here is that they are components of macromolecular complexes, where their conformational flexibility helps mediate interactions with binding partners. IDPs often interact with their binding partners through short sequence motifs, commonly repeated within the disordered regions. As such, multivalent interactions are common for IDPs and their binding partners within macromolecular complexes. Here we discuss the importance of IDP multivalency in three very different macromolecular assemblies: biomolecular condensates, the nuclear pore, and the cytoskeleton.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Animales , Sitios de Unión , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Unión Proteica , Conformación Proteica
8.
Chem Commun (Camb) ; 52(38): 6391-4, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27079937

RESUMEN

An oligoquinoline foldamer library was synthesized and screened for antagonism of lipid bilayer catalysed assembly of islet amyloid polypeptide (IAPP). One tetraquinoline, ADM-116, showed exceptional potency not only in this assay, but also in secondary assays measuring lipid bilayer integrity and rescue of insulin secreting cells from the toxic effects of IAPP. Structure activity studies identified three additional oligoquinolines, closely related to ADM-116, which also have strong activity in the primary, but not the secondary assays. This contrasts work using an oligopyrdyl foldamer scaffold in which all three assays are observed to be correlated. The results suggest that while there is commonality to the structures and pathways of IAPP conformational change, it is nevertheless possible to leverage foldamers to separately affect IAPP's alternative gains-of-function.


Asunto(s)
Péptidos beta-Amiloides/química , Quinolinas/química , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Membrana Dobles de Lípidos/química , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/farmacología
9.
Nat Commun ; 7: 11412, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27108700

RESUMEN

Disordered proteins, such as those central to Alzheimer's and Parkinson's, are particularly intractable for structure-targeted therapeutic design. Here we demonstrate the capacity of a synthetic foldamer to capture structure in a disease relevant peptide. Oligoquinoline amides have a defined fold with a solvent-excluded core that is independent of its outwardly projected, derivatizable moieties. Islet amyloid polypeptide (IAPP) is a peptide central to ß-cell pathology in type II diabetes. A tetraquinoline is presented that stabilizes a pre-amyloid, α-helical conformation of IAPP. This charged, dianionic compound is readily soluble in aqueous buffer, yet crosses biological membranes without cellular assistance: an unexpected capability that is a consequence of its ability to reversibly fold. The tetraquinoline docks specifically with intracellular IAPP and rescues ß-cells from toxicity. Taken together, our work here supports the thesis that stabilizing non-toxic conformers of a plastic protein is a viable strategy for cytotoxic rescue addressable using oligoquinoline amides.


Asunto(s)
Amidas/química , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Quinolinas/química , Animales , Línea Celular , Humanos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Estructura Molecular , Ratas
10.
PLoS One ; 9(8): e105688, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144743

RESUMEN

The Cop9 signalosome complex (CSN) regulates the functional cycle of the major E3 ubiquitin ligase family, the cullin RING E3 ubiquitin ligases (CRLs). Activated CRLs are covalently modified by the ubiquitin-like protein Nedd8 (neural precursor cell expressed developmentally down-regulated protein 8). CSN serves an essential role in myriad cellular processes by reversing this modification through the isopeptidase activity of its CSN5 subunit. CSN5 alone is inactive due to an auto-inhibited conformation of its catalytic domain. Here we report the molecular basis of CSN5 catalytic domain activation and unravel a molecular hierarchy in CSN deneddylation activity. The association of CSN5 and CSN6 MPN (for Mpr1/Pad1 N-terminal) domains activates its isopeptidase activity. The CSN5/CSN6 module, however, is inefficient in CRL deneddylation, indicating a requirement of further elements in this reaction such as other CSN subunits. A hybrid molecular model of CSN5/CSN6 provides a structural framework to explain these functional observations. Docking this model into a published CSN electron density map and using distance constraints obtained from cross-linking coupled to mass-spectrometry, we find that the C-termini of the CSN subunits could form a helical bundle in the centre of the structure. They likely play a key scaffolding role in the spatial organization of CSN and precise positioning of the dimeric MPN catalytic core.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Péptidos y Proteínas de Señalización Intracelular/química , Complejos Multiproteicos/química , Péptido Hidrolasas/química , Multimerización de Proteína , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo del Señalosoma COP9 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteína NEDD8 , Péptido Hidrolasas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Ubiquitinas/metabolismo
11.
Curr Protein Pept Sci ; 15(5): 504-17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24555901

RESUMEN

MPN (Mpr1/Pad1 N-terminal) domain-containing proteins are present throughout all domains of life. In eukaryotes, MPN domain-containing proteins are commonly found in association with other molecules in large protein complexes, where examples comprise; the 26S proteasome and the COP9 (Constitutive photomorphogenesis 9) signalosome complexes, including the MPN subunits, POH1 and Mov34, CSN5 and CSN6, respectively. Examples of MPN domaincontaining proteins that are not incorporated in a large multi-protein complex have also been reported and include AMSH (for associated molecule with the SH3 domain of STAM) and the AMSH-Like Protein (AMSH-LP). Within the MPN domain super-family, two main subclasses have been characterised: the MPN⁺ and MPN⁻ domain-containing proteins. MPN⁺ domain-containing proteins are classified as metalloenzymes responsible for isopeptidase activity. These proteins display a JAMM (JAB1-MPN-MOV34) metalloisopeptidase motif, typically consisting of a canonical sequence (E-x[2]-H-S/T-Hx[7]-S-x[2]-D) and coordinating a zinc ion. The JAMM motif specifies a catalytic centre essential for selective hydrolysis of linkages, contained between ubiquitin/ubiquitin-like proteins and target proteins or between ubiquitin monomers within a polymeric chain. The MPN⁻ family classifies proteins, which lack the key residues present in the typical JAMM motif. These MPN⁻ proteins are void of catalytic activity, but recent studies have proposed a role in mediating protein-protein interactions, in acting as a scaffold or in activity regulation. In light of recent structural and functional studies, a more detailed understanding of these proteins has been gained and is given in the present review.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Animales , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
12.
Proc Natl Acad Sci U S A ; 110(4): 1273-8, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23288897

RESUMEN

The COP9 (Constitutive photomorphogenesis 9) signalosome (CSN), a large multiprotein complex that resembles the 19S lid of the 26S proteasome, plays a central role in the regulation of the E3-cullin RING ubiquitin ligases (CRLs). The catalytic activity of the CSN complex, carried by subunit 5 (CSN5/Jab1), resides in the deneddylation of the CRLs that is the hydrolysis of the cullin-neural precursor cell expressed developmentally downregulated gene 8 (Nedd8)isopeptide bond. Whereas CSN-dependent CSN5 displays isopeptidase activity, it is intrinsically inactive in other physiologically relevant forms. Here we analyze the crystal structure of CSN5 in its catalytically inactive form to illuminate the molecular basis for its activation state. We show that CSN5 presents a catalytic domain that brings essential elements to understand its activity control. Although the CSN5 active site is catalytically competent and compatible with di-isopeptide binding, the Ins-1 segment obstructs access to its substrate-binding site, and structural rearrangements are necessary for the Nedd8-binding pocket formation. Detailed study of CSN5 by molecular dynamics unveils signs of flexibility and plasticity of the Ins-1 segment. These analyses led to the identification of a molecular trigger implicated in the active/inactive switch that is sufficient to impose on CSN5 an active isopeptidase state. We show that a single mutation in the Ins-1 segment restores biologically relevant deneddylase activity. This study presents detailed insights into CSN5 regulation. Additionally, a dynamic monomer-dimer equilibrium exists both in vitro and in vivo and may be functionally relevant.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Arginina/química , Complejo del Señalosoma COP9 , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteína NEDD8 , Péptido Hidrolasas/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Ubiquitinas/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA